Make initial public release

This commit is contained in:
Joachim Strömbergson 2022-09-19 08:51:11 +02:00 committed by Daniel Lublin
commit 715de60f4a
251 changed files with 881225 additions and 0 deletions

View file

@ -0,0 +1,23 @@
Copyright (c) 2014, Joachim Strömbergson
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -0,0 +1,9 @@
uart
====
A simple universal asynchronous receiver/transmitter (UART) core
implemented in Verilog.
# Status
The core is completed and has been used in several FPGA designs.

View file

@ -0,0 +1,306 @@
//======================================================================
//
// uart.v
// ------
// Top level wrapper for the uart core.
//
// A simple universal asynchronous receiver/transmitter (UART)
// interface. The interface contains 16 byte wide transmit and
// receivea buffers and can handle start and stop bits. But in
// general is rather simple. The primary purpose is as host
// interface for the coretest design. The core also has a
// loopback mode to allow testing of a serial link.
//
// Note that the UART has a separate API interface to allow
// a control core to change settings such as speed. But the core
// has default values to allow it to start operating directly
// after reset. No config should be needed.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, Secworks Sweden AB
// SPDX-License-Identifier: BSD-2-Clause
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module uart(
input wire clk,
input wire reset_n,
input wire rxd,
output wire txd,
input wire cs,
input wire we,
input wire [7 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data,
output wire ready
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam ADDR_CORE_NAME0 = 8'h00;
localparam ADDR_CORE_NAME1 = 8'h01;
localparam ADDR_CORE_VERSION = 8'h02;
localparam ADDR_BIT_RATE = 8'h10;
localparam ADDR_DATA_BITS = 8'h11;
localparam ADDR_STOP_BITS = 8'h12;
localparam ADDR_RX_STATUS = 8'h20;
localparam ADDR_RX_DATA = 8'h21;
localparam ADDR_TX_STATUS = 8'h40;
localparam ADDR_TX_DATA = 8'h41;
localparam CORE_NAME0 = 32'h75617274; // "uart"
localparam CORE_NAME1 = 32'h20202020; // " "
localparam CORE_VERSION = 32'h00000004;
// The default bit rate is based on target clock frequency
// divided by the bit rate times in order to hit the
// center of the bits. I.e.
// Clock: 12 MHz, 38400 bps
// Divisor = 12*10E6 / 38400 = 312
localparam DEFAULT_BIT_RATE = 16'd312;
localparam DEFAULT_DATA_BITS = 4'h8;
localparam DEFAULT_STOP_BITS = 2'h1;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [15 : 0] bit_rate_reg;
reg bit_rate_we;
reg [3 : 0] data_bits_reg;
reg data_bits_we;
reg [1 : 0] stop_bits_reg;
reg stop_bits_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
wire core_rxd_syn;
wire [7 : 0] core_rxd_data;
wire core_rxd_ack;
reg core_txd_syn;
reg [7 : 0] core_txd_data;
wire core_txd_ready;
wire fifo_out_syn;
wire [7 : 0] fifo_out_data;
reg fifo_out_ack;
reg [31 : 0] tmp_read_data;
reg tmp_ready;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign read_data = tmp_read_data;
assign ready = tmp_ready;
//----------------------------------------------------------------
// Module instantiations.
//----------------------------------------------------------------
uart_core core(
.clk(clk),
.reset_n(reset_n),
// Configuration parameters
.bit_rate(bit_rate_reg),
.data_bits(data_bits_reg),
.stop_bits(stop_bits_reg),
// External data interface
.rxd(rxd),
.txd(txd),
// Internal receive interface.
.rxd_syn(core_rxd_syn),
.rxd_data(core_rxd_data),
.rxd_ack(core_rxd_ack),
// Internal transmit interface.
.txd_syn(core_txd_syn),
.txd_data(core_txd_data),
.txd_ready(core_txd_ready)
);
uart_fifo fifo(
.clk(clk),
.reset_n(reset_n),
.in_syn(core_rxd_syn),
.in_data(core_rxd_data),
.in_ack(core_rxd_ack),
.out_syn(fifo_out_syn),
.out_data(fifo_out_data),
.out_ack(fifo_out_ack)
);
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with synchronous
// active low reset.
//----------------------------------------------------------------
always @ (posedge clk)
begin: reg_update
if (!reset_n) begin
bit_rate_reg <= DEFAULT_BIT_RATE;
data_bits_reg <= DEFAULT_DATA_BITS;
stop_bits_reg <= DEFAULT_STOP_BITS;
end
else begin
if (bit_rate_we) begin
bit_rate_reg <= write_data[15 : 0];
end
if (data_bits_we) begin
data_bits_reg <= write_data[3 : 0];
end
if (stop_bits_we) begin
stop_bits_reg <= write_data[1 : 0];
end
end
end // reg_update
//----------------------------------------------------------------
// api
//
// The core API that allows an internal host to control the
// core functionality.
//----------------------------------------------------------------
always @*
begin: api
// Default assignments.
bit_rate_we = 1'h0;
data_bits_we = 1'h0;
stop_bits_we = 1'h0;
core_txd_syn = 1'h0;
fifo_out_ack = 1'h0;
tmp_read_data = 32'h0;
tmp_ready = 1'h0;
core_txd_data = write_data[7 : 0];
if (cs) begin
tmp_ready = 1'h1;
if (we) begin
case (address)
ADDR_BIT_RATE: begin
bit_rate_we = 1;
end
ADDR_DATA_BITS: begin
data_bits_we = 1;
end
ADDR_STOP_BITS: begin
stop_bits_we = 1;
end
ADDR_TX_DATA: begin
core_txd_syn = 1'h1;
end
default: begin
end
endcase // case (address)
end
else begin
case (address)
ADDR_CORE_NAME0: begin
tmp_read_data = CORE_NAME0;
end
ADDR_CORE_NAME1: begin
tmp_read_data = CORE_NAME1;
end
ADDR_CORE_VERSION: begin
tmp_read_data = CORE_VERSION;
end
ADDR_BIT_RATE: begin
tmp_read_data = {16'h0, bit_rate_reg};
end
ADDR_DATA_BITS: begin
tmp_read_data = {28'h0, data_bits_reg};
end
ADDR_STOP_BITS: begin
tmp_read_data = {30'h0, stop_bits_reg};
end
ADDR_RX_STATUS: begin
tmp_read_data = {31'h0, fifo_out_syn};
end
ADDR_RX_DATA: begin
fifo_out_ack = 1'h1;
tmp_read_data = {24'h0, fifo_out_data};
end
ADDR_TX_STATUS: begin
tmp_read_data = {31'h0, core_txd_ready};
end
default: begin
end
endcase // case (address)
end
end
end
endmodule // uart
//======================================================================
// EOF uart.v
//======================================================================

View file

@ -0,0 +1,532 @@
//======================================================================
//
// uart_core.v
// -----------
// A simple universal asynchronous receiver/transmitter (UART)
// interface. The interface contains 16 byte wide transmit and
// receivea buffers and can handle start and stop bits. But in
// general is rather simple. The primary purpose is as host
// interface for the coretest design. The core also has a
// loopback mode to allow testing of a serial link.
//
// Note that the UART has a separate API interface to allow
// a control core to change settings such as speed. But the core
// has default values to allow it to start operating directly
// after reset. No config should be needed.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, Secworks Sweden AB
//
// SPDX-License-Identifier: BSD-2-Clause
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module uart_core(
input wire clk,
input wire reset_n,
// Configuration parameters
input wire [15 : 0] bit_rate,
input wire [3 : 0] data_bits,
input wire [1 : 0] stop_bits,
// External data interface
input wire rxd,
output wire txd,
// Internal receive interface.
output wire rxd_syn,
output [7 : 0] rxd_data,
input wire rxd_ack,
// Internal transmit interface.
input wire txd_syn,
input wire [7 : 0] txd_data,
output wire txd_ready
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter ERX_IDLE = 0;
parameter ERX_START = 1;
parameter ERX_BITS = 2;
parameter ERX_STOP = 3;
parameter ERX_SYN = 4;
parameter ETX_IDLE = 0;
parameter ETX_ACK = 1;
parameter ETX_START = 2;
parameter ETX_BITS = 3;
parameter ETX_STOP = 4;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg rxd0_reg;
reg rxd_reg;
reg [7 : 0] rxd_byte_reg;
reg rxd_byte_we;
reg [4 : 0] rxd_bit_ctr_reg;
reg [4 : 0] rxd_bit_ctr_new;
reg rxd_bit_ctr_we;
reg rxd_bit_ctr_rst;
reg rxd_bit_ctr_inc;
reg [15 : 0] rxd_bitrate_ctr_reg;
reg [15 : 0] rxd_bitrate_ctr_new;
reg rxd_bitrate_ctr_we;
reg rxd_bitrate_ctr_rst;
reg rxd_bitrate_ctr_inc;
reg rxd_syn_reg;
reg rxd_syn_new;
reg rxd_syn_we;
reg [2 : 0] erx_ctrl_reg;
reg [2 : 0] erx_ctrl_new;
reg erx_ctrl_we;
reg txd_reg;
reg txd_new;
reg txd_we;
reg [7 : 0] txd_byte_reg;
reg [7 : 0] txd_byte_new;
reg txd_byte_we;
reg [4 : 0] txd_bit_ctr_reg;
reg [4 : 0] txd_bit_ctr_new;
reg txd_bit_ctr_we;
reg txd_bit_ctr_rst;
reg txd_bit_ctr_inc;
reg [15 : 0] txd_bitrate_ctr_reg;
reg [15 : 0] txd_bitrate_ctr_new;
reg txd_bitrate_ctr_we;
reg txd_bitrate_ctr_rst;
reg txd_bitrate_ctr_inc;
reg txd_ready_reg;
reg txd_ready_new;
reg txd_ready_we;
reg [2 : 0] etx_ctrl_reg;
reg [2 : 0] etx_ctrl_new;
reg etx_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
wire [15 : 0] half_bit_rate;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign txd = txd_reg;
assign rxd_syn = rxd_syn_reg;
assign rxd_data = rxd_byte_reg;
assign txd_ready = txd_ready_reg;
assign half_bit_rate = {1'b0, bit_rate[15 : 1]};
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with
// synchronous active low reset.
//----------------------------------------------------------------
always @ (posedge clk)
begin: reg_update
if (!reset_n) begin
rxd0_reg <= 1'b0;
rxd_reg <= 1'b0;
rxd_byte_reg <= 8'h0;
rxd_bit_ctr_reg <= 5'h0;
rxd_bitrate_ctr_reg <= 16'h0;
rxd_syn_reg <= 0;
erx_ctrl_reg <= ERX_IDLE;
txd_reg <= 1'b1;
txd_byte_reg <= 8'h0;
txd_bit_ctr_reg <= 5'h0;
txd_bitrate_ctr_reg <= 16'h0;
txd_ready_reg <= 1'b1;
etx_ctrl_reg <= ETX_IDLE;
end
else begin
rxd0_reg <= rxd;
rxd_reg <= rxd0_reg;
if (rxd_byte_we) begin
rxd_byte_reg <= {rxd_reg, rxd_byte_reg[7 : 1]};
end
if (rxd_bit_ctr_we) begin
rxd_bit_ctr_reg <= rxd_bit_ctr_new;
end
if (rxd_bitrate_ctr_we) begin
rxd_bitrate_ctr_reg <= rxd_bitrate_ctr_new;
end
if (rxd_syn_we) begin
rxd_syn_reg <= rxd_syn_new;
end
if (erx_ctrl_we) begin
erx_ctrl_reg <= erx_ctrl_new;
end
if (txd_we) begin
txd_reg <= txd_new;
end
if (txd_byte_we) begin
txd_byte_reg <= txd_byte_new;
end
if (txd_bit_ctr_we) begin
txd_bit_ctr_reg <= txd_bit_ctr_new;
end
if (txd_bitrate_ctr_we) begin
txd_bitrate_ctr_reg <= txd_bitrate_ctr_new;
end
if (txd_ready_we) begin
txd_ready_reg <= txd_ready_new;
end
if (etx_ctrl_we) begin
etx_ctrl_reg <= etx_ctrl_new;
end
end
end // reg_update
//----------------------------------------------------------------
// rxd_bit_ctr
//
// Bit counter for receiving data on the external
// serial interface.
//----------------------------------------------------------------
always @*
begin: rxd_bit_ctr
rxd_bit_ctr_new = 5'h0;
rxd_bit_ctr_we = 1'b0;
if (rxd_bit_ctr_rst) begin
rxd_bit_ctr_new = 5'h0;
rxd_bit_ctr_we = 1'b1;
end
else if (rxd_bit_ctr_inc) begin
rxd_bit_ctr_new = rxd_bit_ctr_reg + 1'h1;
rxd_bit_ctr_we = 1'b1;
end
end // rxd_bit_ctr
//----------------------------------------------------------------
// rxd_bitrate_ctr
//
// Bitrate counter for receiving data on the external
// serial interface.
//----------------------------------------------------------------
always @*
begin: rxd_bitrate_ctr
rxd_bitrate_ctr_new = 16'h0;
rxd_bitrate_ctr_we = 1'h0;
if (rxd_bitrate_ctr_rst) begin
rxd_bitrate_ctr_new = 16'h0;
rxd_bitrate_ctr_we = 1'b1;
end
else if (rxd_bitrate_ctr_inc) begin
rxd_bitrate_ctr_new = rxd_bitrate_ctr_reg + 1'h1;
rxd_bitrate_ctr_we = 1'b1;
end
end // rxd_bitrate_ctr
//----------------------------------------------------------------
// txd_bit_ctr
//
// Bit counter for transmitting data on the external
// serial interface.
//----------------------------------------------------------------
always @*
begin: txd_bit_ctr
txd_bit_ctr_new = 5'h0;
txd_bit_ctr_we = 1'h0;
if (txd_bit_ctr_rst) begin
txd_bit_ctr_new = 5'h0;
txd_bit_ctr_we = 1'h1;
end
else if (txd_bit_ctr_inc) begin
txd_bit_ctr_new = txd_bit_ctr_reg + 1'h1;
txd_bit_ctr_we = 1'b1;
end
end // txd_bit_ctr
//----------------------------------------------------------------
// txd_bitrate_ctr
//
// Bitrate counter for transmitting data on the external
// serial interface.
//----------------------------------------------------------------
always @*
begin: txd_bitrate_ctr
txd_bitrate_ctr_new = 16'h0;
txd_bitrate_ctr_we = 0;
if (txd_bitrate_ctr_rst) begin
txd_bitrate_ctr_new = 16'h0;
txd_bitrate_ctr_we = 1;
end
else if (txd_bitrate_ctr_inc) begin
txd_bitrate_ctr_new = txd_bitrate_ctr_reg + 1'h1;
txd_bitrate_ctr_we = 1;
end
end // txd_bitrate_ctr
//----------------------------------------------------------------
// external_rx_engine
//
// Logic that implements the receive engine towards
// the external interface. Detects incoming data, collects it,
// if required checks parity and store correct data into
// the rx buffer.
//----------------------------------------------------------------
always @*
begin: external_rx_engine
rxd_bit_ctr_rst = 0;
rxd_bit_ctr_inc = 0;
rxd_bitrate_ctr_rst = 0;
rxd_bitrate_ctr_inc = 0;
rxd_byte_we = 0;
rxd_syn_new = 0;
rxd_syn_we = 0;
erx_ctrl_new = ERX_IDLE;
erx_ctrl_we = 0;
case (erx_ctrl_reg)
ERX_IDLE: begin
if (!rxd_reg) begin
// Possible start bit detected.
rxd_bitrate_ctr_rst = 1;
erx_ctrl_new = ERX_START;
erx_ctrl_we = 1;
end
end
ERX_START: begin
rxd_bitrate_ctr_inc = 1;
if (rxd_reg) begin
// Just a glitch.
erx_ctrl_new = ERX_IDLE;
erx_ctrl_we = 1;
end
else begin
if (rxd_bitrate_ctr_reg == half_bit_rate) begin
// start bit assumed. We start sampling data.
rxd_bit_ctr_rst = 1;
rxd_bitrate_ctr_rst = 1;
erx_ctrl_new = ERX_BITS;
erx_ctrl_we = 1;
end
end
end
ERX_BITS: begin
if (rxd_bitrate_ctr_reg < bit_rate) begin
rxd_bitrate_ctr_inc = 1;
end
else begin
rxd_byte_we = 1;
rxd_bit_ctr_inc = 1;
rxd_bitrate_ctr_rst = 1;
if (rxd_bit_ctr_reg == data_bits - 1) begin
erx_ctrl_new = ERX_STOP;
erx_ctrl_we = 1;
end
end
end
ERX_STOP: begin
rxd_bitrate_ctr_inc = 1;
if (rxd_bitrate_ctr_reg == bit_rate * stop_bits) begin
rxd_syn_new = 1;
rxd_syn_we = 1;
erx_ctrl_new = ERX_SYN;
erx_ctrl_we = 1;
end
end
ERX_SYN: begin
if (rxd_ack) begin
rxd_syn_new = 0;
rxd_syn_we = 1;
erx_ctrl_new = ERX_IDLE;
erx_ctrl_we = 1;
end
end
default: begin
end
endcase // case (erx_ctrl_reg)
end // external_rx_engine
//----------------------------------------------------------------
// external_tx_engine
//
// Logic that implements the transmit engine towards
// the external interface.
//----------------------------------------------------------------
always @*
begin: external_tx_engine
txd_new = 0;
txd_we = 0;
txd_byte_new = 0;
txd_byte_we = 0;
txd_bit_ctr_rst = 0;
txd_bit_ctr_inc = 0;
txd_bitrate_ctr_rst = 0;
txd_bitrate_ctr_inc = 0;
txd_ready_new = 0;
txd_ready_we = 0;
etx_ctrl_new = ETX_IDLE;
etx_ctrl_we = 0;
case (etx_ctrl_reg)
ETX_IDLE: begin
txd_new = 1;
txd_we = 1;
if (txd_syn) begin
txd_byte_new = txd_data;
txd_byte_we = 1;
txd_ready_new = 0;
txd_ready_we = 1;
txd_bitrate_ctr_rst = 1;
etx_ctrl_new = ETX_ACK;
etx_ctrl_we = 1;
end
end
ETX_ACK: begin
if (!txd_syn) begin
txd_new = 0;
txd_we = 1;
etx_ctrl_new = ETX_START;
etx_ctrl_we = 1;
end
end
ETX_START: begin
if (txd_bitrate_ctr_reg == bit_rate) begin
txd_bit_ctr_rst = 1;
etx_ctrl_new = ETX_BITS;
etx_ctrl_we = 1;
end
else begin
txd_bitrate_ctr_inc = 1;
end
end
ETX_BITS: begin
if (txd_bitrate_ctr_reg < bit_rate) begin
txd_bitrate_ctr_inc = 1;
end
else begin
txd_bitrate_ctr_rst = 1;
if (txd_bit_ctr_reg == data_bits) begin
txd_new = 1;
txd_we = 1;
etx_ctrl_new = ETX_STOP;
etx_ctrl_we = 1;
end
else begin
txd_new = txd_byte_reg[txd_bit_ctr_reg];
txd_we = 1;
txd_bit_ctr_inc = 1;
end
end
end
ETX_STOP: begin
txd_bitrate_ctr_inc = 1;
if (txd_bitrate_ctr_reg == bit_rate * stop_bits) begin
txd_ready_new = 1;
txd_ready_we = 1;
etx_ctrl_new = ETX_IDLE;
etx_ctrl_we = 1;
end
end
default: begin
end
endcase // case (etx_ctrl_reg)
end // external_tx_engine
endmodule // uart
//======================================================================
// EOF uart.v
//======================================================================

View file

@ -0,0 +1,179 @@
//======================================================================
//
// uart_fifo.v
// -----------
// FIFO for rx and tx data buffering in the UART.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2022, Tillitis AB
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module uart_fifo(
input wire clk,
input wire reset_n,
input wire in_syn,
input wire [7 : 0] in_data,
output wire in_ack,
output wire out_syn,
output wire [7 : 0] out_data,
input wire out_ack
);
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [7 : 0] fifo_mem [0 : 255];
reg fifo_mem_we;
reg [7: 0] in_ptr_reg;
reg [7: 0] in_ptr_new;
reg in_ptr_inc;
reg in_ptr_we;
reg [7: 0] out_ptr_reg;
reg [7: 0] out_ptr_new;
reg out_ptr_inc;
reg out_ptr_we;
reg [7: 0] byte_ctr_reg;
reg [7: 0] byte_ctr_new;
reg byte_ctr_inc;
reg byte_ctr_dec;
reg byte_ctr_we;
reg in_ack_reg;
reg in_ack_new;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign in_ack = in_ack_reg;
assign out_syn = |byte_ctr_reg;
assign out_data = fifo_mem[out_ptr_reg];
//----------------------------------------------------------------
// reg_update
//----------------------------------------------------------------
always @ (posedge clk)
begin: reg_update
if (!reset_n) begin
in_ptr_reg <= 8'h0;
out_ptr_reg <= 8'h0;
byte_ctr_reg <= 8'h0;
in_ack_reg <= 1'h0;
end
else begin
in_ack_reg <= in_ack_new;
if (fifo_mem_we) begin
fifo_mem[in_ptr_reg] <= in_data;
end
if (in_ptr_we) begin
in_ptr_reg <= in_ptr_new;
end
if (out_ptr_we) begin
out_ptr_reg <= out_ptr_new;
end
if (byte_ctr_we) begin
byte_ctr_reg <= byte_ctr_new;
end
end
end // reg_update
//----------------------------------------------------------------
// byte_ctr
//----------------------------------------------------------------
always @*
begin : byte_ctr
byte_ctr_new = 8'h0;
byte_ctr_we = 1'h0;
if ((byte_ctr_inc) && (!byte_ctr_dec)) begin
byte_ctr_new = byte_ctr_reg + 1'h1;
byte_ctr_we = 1'h1;
end
else if ((!byte_ctr_inc) && (byte_ctr_dec)) begin
byte_ctr_new = byte_ctr_reg - 1'h1;
byte_ctr_we = 1'h1;
end
end
//----------------------------------------------------------------
// in_logic
//----------------------------------------------------------------
always @*
begin : in_logic
fifo_mem_we = 1'h0;
in_ack_new = 1'h0;
byte_ctr_inc = 1'h0;
in_ptr_new = in_ptr_reg + 1'h1;
in_ptr_we = 1'h0;
if ((in_syn) && (!in_ack) && (byte_ctr_reg < 8'hff)) begin
fifo_mem_we = 1'h1;
in_ack_new = 1'h1;
byte_ctr_inc = 1'h1;
in_ptr_we = 1'h1;
end
end
//----------------------------------------------------------------
// out_logic
//----------------------------------------------------------------
always @*
begin : out_logic
byte_ctr_dec = 1'h0;
out_ptr_new = out_ptr_reg + 1'h1;
out_ptr_we = 1'h0;
if ((out_ack) && (byte_ctr_reg > 8'h0)) begin
byte_ctr_dec = 1'h1;
out_ptr_we = 1'h1;
end
end
endmodule // uart_fifo
//======================================================================
// EOF uart_fifo.v
//======================================================================

View file

@ -0,0 +1,389 @@
//======================================================================
//
// tb_uart.v
// ---------
// Testbench for the UART core.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, Secworks Sweden AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module tb_uart();
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter DEBUG = 0;
parameter VERBOSE = 0;
parameter CLK_HALF_PERIOD = 1;
parameter CLK_PERIOD = CLK_HALF_PERIOD * 2;
//----------------------------------------------------------------
// Register and Wire declarations.
//----------------------------------------------------------------
reg [31 : 0] cycle_ctr;
reg [31 : 0] error_ctr;
reg [31 : 0] tc_ctr;
reg tb_clk;
reg tb_reset_n;
reg tb_rxd;
wire tb_txd;
wire tb_rxd_syn;
wire [7 : 0] tb_rxd_data;
wire tb_rxd_ack;
wire tb_txd_syn;
wire [7 : 0] tb_txd_data;
wire tb_txd_ack;
reg tb_cs;
reg tb_we;
reg [7 : 0] tb_address;
reg [31 : 0] tb_write_data;
wire [31 : 0] tb_read_data;
wire tb_error;
wire [7 : 0] tb_debug;
reg txd_state;
//----------------------------------------------------------------
// Device Under Test.
//----------------------------------------------------------------
uart dut(
.clk(tb_clk),
.reset_n(tb_reset_n),
.rxd(tb_rxd),
.txd(tb_txd),
.rxd_syn(tb_rxd_syn),
.rxd_data(tb_rxd_data),
.rxd_ack(tb_rxd_ack),
// Internal transmit interface.
.txd_syn(tb_txd_syn),
.txd_data(tb_txd_data),
.txd_ack(tb_txd_ack),
// API interface.
.cs(tb_cs),
.we(tb_we),
.address(tb_address),
.write_data(tb_write_data),
.read_data(tb_read_data),
.error(tb_error),
.debug(tb_debug)
);
//----------------------------------------------------------------
// Concurrent assignments.
//----------------------------------------------------------------
// We connect the internal facing ports on the dut together.
assign tb_txd_syn = tb_rxd_syn;
assign tb_txd_data = tb_rxd_data;
assign tb_rxd_ack = tb_txd_ack;
//----------------------------------------------------------------
// clk_gen
//
// Clock generator process.
//----------------------------------------------------------------
always
begin : clk_gen
#CLK_HALF_PERIOD tb_clk = !tb_clk;
end // clk_gen
//----------------------------------------------------------------
// sys_monitor
//----------------------------------------------------------------
always
begin : sys_monitor
#(CLK_PERIOD);
if (DEBUG)
begin
dump_rx_state();
dump_tx_state();
$display("");
end
if (VERBOSE)
begin
$display("cycle: 0x%016x", cycle_ctr);
end
cycle_ctr = cycle_ctr + 1;
end
//----------------------------------------------------------------
// tx_monitor
//
// Observes what happens on the dut tx port and reports it.
//----------------------------------------------------------------
always @*
begin : tx_monitor
if ((!tb_txd) && txd_state)
begin
$display("txd going low.");
txd_state = 0;
end
if (tb_txd && (!txd_state))
begin
$display("txd going high");
txd_state = 1;
end
end
//----------------------------------------------------------------
// dump_dut_state()
//
// Dump the state of the dut when needed.
//----------------------------------------------------------------
task dump_dut_state;
begin
$display("State of DUT");
$display("------------");
$display("Inputs and outputs:");
$display("rxd = 0x%01x, txd = 0x%01x,",
dut.core.rxd, dut.core.txd);
$display("");
$display("Sample and data registers:");
$display("rxd_reg = 0x%01x, rxd_byte_reg = 0x%01x",
dut.core.rxd_reg, dut.core.rxd_byte_reg);
$display("");
$display("Counters:");
$display("rxd_bit_ctr_reg = 0x%01x, rxd_bitrate_ctr_reg = 0x%02x",
dut.core.rxd_bit_ctr_reg, dut.core.rxd_bitrate_ctr_reg);
$display("");
$display("Control signals and FSM state:");
$display("erx_ctrl_reg = 0x%02x",
dut.core.erx_ctrl_reg);
$display("");
end
endtask // dump_dut_state
//----------------------------------------------------------------
// dump_rx_state()
//
// Dump the state of the rx engine.
//----------------------------------------------------------------
task dump_rx_state;
begin
$display("rxd = 0x%01x, rxd_reg = 0x%01x, rxd_byte_reg = 0x%01x, rxd_bit_ctr_reg = 0x%01x, rxd_bitrate_ctr_reg = 0x%02x, rxd_syn = 0x%01x, erx_ctrl_reg = 0x%02x",
dut.core.rxd, dut.core.rxd_reg, dut.core.rxd_byte_reg, dut.core.rxd_bit_ctr_reg,
dut.core.rxd_bitrate_ctr_reg, dut.core.rxd_syn, dut.core.erx_ctrl_reg);
end
endtask // dump_dut_state
//----------------------------------------------------------------
// dump_tx_state()
//
// Dump the state of the tx engine.
//----------------------------------------------------------------
task dump_tx_state;
begin
$display("txd = 0x%01x, txd_reg = 0x%01x, txd_byte_reg = 0x%01x, txd_bit_ctr_reg = 0x%01x, txd_bitrate_ctr_reg = 0x%02x, txd_ack = 0x%01x, etx_ctrl_reg = 0x%02x",
dut.core.txd, dut.core.txd_reg, dut.core.txd_byte_reg, dut.core.txd_bit_ctr_reg,
dut.core.txd_bitrate_ctr_reg, dut.core.txd_ack, dut.core.etx_ctrl_reg);
end
endtask // dump_dut_state
//----------------------------------------------------------------
// reset_dut()
//----------------------------------------------------------------
task reset_dut;
begin
$display("*** Toggle reset.");
tb_reset_n = 0;
#(2 * CLK_PERIOD);
tb_reset_n = 1;
end
endtask // reset_dut
//----------------------------------------------------------------
// init_sim()
//
// Initialize all counters and testbed functionality as well
// as setting the DUT inputs to defined values.
//----------------------------------------------------------------
task init_sim;
begin
cycle_ctr = 0;
error_ctr = 0;
tc_ctr = 0;
tb_clk = 0;
tb_reset_n = 1;
tb_rxd = 1;
tb_cs = 0;
tb_we = 0;
tb_address = 8'h00;
tb_write_data = 32'h00000000;
txd_state = 1;
end
endtask // init_sim
//----------------------------------------------------------------
// transmit_byte
//
// Transmit a byte of data to the DUT receive port.
//----------------------------------------------------------------
task transmit_byte(input [7 : 0] data);
integer i;
begin
$display("*** Transmitting byte 0x%02x to the dut.", data);
#10;
// Start bit
$display("*** Transmitting start bit.");
tb_rxd = 0;
#(CLK_PERIOD * dut.DEFAULT_BIT_RATE);
// Send the bits LSB first.
for (i = 0 ; i < 8 ; i = i + 1)
begin
$display("*** Transmitting data[%1d] = 0x%01x.", i, data[i]);
tb_rxd = data[i];
#(CLK_PERIOD * dut.DEFAULT_BIT_RATE);
end
// Send two stop bits. I.e. two bit times high (mark) value.
$display("*** Transmitting two stop bits.");
tb_rxd = 1;
#(2 * CLK_PERIOD * dut.DEFAULT_BIT_RATE * dut.DEFAULT_STOP_BITS);
$display("*** End of transmission.");
end
endtask // transmit_byte
//----------------------------------------------------------------
// check_transmit
//
// Transmits a byte and checks that it was captured internally
// by the dut.
//----------------------------------------------------------------
task check_transmit(input [7 : 0] data);
begin
tc_ctr = tc_ctr + 1;
transmit_byte(data);
if (dut.core.rxd_byte_reg == data)
begin
$display("*** Correct data: 0x%01x captured by the dut.",
dut.core.rxd_byte_reg);
end
else
begin
$display("*** Incorrect data: 0x%01x captured by the dut Should be: 0x%01x.",
dut.core.rxd_byte_reg, data);
error_ctr = error_ctr + 1;
end
end
endtask // check_transmit
//----------------------------------------------------------------
// test_transmit
//
// Transmit a number of test bytes to the dut.
//----------------------------------------------------------------
task test_transmit;
begin
check_transmit(8'h55);
check_transmit(8'h42);
check_transmit(8'hde);
check_transmit(8'had);
end
endtask // test_transmit
//----------------------------------------------------------------
// display_test_result()
//
// Display the accumulated test results.
//----------------------------------------------------------------
task display_test_result;
begin
if (error_ctr == 0)
begin
$display("*** All %02d test cases completed successfully", tc_ctr);
end
else
begin
$display("*** %02d test cases did not complete successfully.", error_ctr);
end
end
endtask // display_test_result
//----------------------------------------------------------------
// uart_test
// The main test functionality.
//----------------------------------------------------------------
initial
begin : uart_test
$display(" -- Testbench for uart core started --");
init_sim();
dump_dut_state();
reset_dut();
dump_dut_state();
test_transmit();
display_test_result();
$display("*** Simulation done.");
$finish;
end // uart_test
endmodule // tb_uart
//======================================================================
// EOF tb_uart.v
//======================================================================