gpt4all/gpt4all-backend/scripts/convert_mpt_hf_to_gguf.py
2023-10-05 18:16:19 -04:00

173 lines
5.3 KiB
Python

# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 models/convert-h5-to-ggml.py
#
# This script is similar to "convert-pt-to-ggml.py"
#
from __future__ import annotations
import json
import os
import struct
import sys
from pathlib import Path
import gguf
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if not 3 <= len(sys.argv) < 5:
print("Usage: python {} model-name dir-output [ftype]".format(Path(__file__).name))
print(" model-name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
model_name = sys.argv[1]
dir_out = Path(sys.argv[2])
# make sure the output directory exists
dir_out.mkdir(exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = int(sys.argv[3])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = dir_out / f"ggml-model-{Path(model_name).name}-{ftype_str[ftype]}.gguf"
ARCH = gguf.MODEL_ARCH.MPT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
config = AutoConfig.from_pretrained(model_name)
print("Loading model:", model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True,
)
config = model.config
print("Model loaded:", model_name)
block_count = config.n_layers
gguf_writer.add_name("MPT")
gguf_writer.add_context_length(config.max_seq_len)
gguf_writer.add_embedding_length(config.d_model)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(config.n_heads)
gguf_writer.add_max_alibi_bias(config.attn_config.alibi_bias_max)
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
gguf_writer.add_file_type(ftype)
clip_qkv = config.attn_config.clip_qkv
if clip_qkv is not None:
gguf_writer.add_clamp_kqv(clip_qkv)
print("gguf: get gpt2 tokenizer vocab")
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_ids = tokenizer.all_special_ids
tokens: list[bytearray] = []
toktypes: list[gguf.TokenType] = []
# TODO(cebtenzzre): this is probably wrong, but I don't know what else to put here
dot_token = tokenizer.encode('.')[0]
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
for i in range(config.vocab_size):
text = tokenizer.decode([dot_token, i]).encode('utf-8')
text = text[1:] # remove the first byte (it's always '.')
tokens.append(text)
# TODO(cebtenzzre): is there a better way to do this?
toktypes.append(gguf.TokenType.CONTROL if i in special_ids else gguf.TokenType.NORMAL)
gguf_writer.add_tokenizer_model("gpt2")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
print("gguf: get tensor metadata")
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
list_vars = model.state_dict()
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable:", name, "with shape:", data.shape)
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
# Keep token embeddings in fp32
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1 or data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print()