mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
173 lines
5.3 KiB
Python
173 lines
5.3 KiB
Python
# Convert Hugging Face fine-tuned bloom-like models to ggml format
|
|
#
|
|
# Usage:
|
|
#
|
|
# python3 models/convert-h5-to-ggml.py
|
|
#
|
|
# This script is similar to "convert-pt-to-ggml.py"
|
|
#
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import os
|
|
import struct
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import gguf
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
|
|
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
if not 3 <= len(sys.argv) < 5:
|
|
print("Usage: python {} model-name dir-output [ftype]".format(Path(__file__).name))
|
|
print(" model-name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
|
|
print(" dir-output: directory where the output file will be written")
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
sys.exit(1)
|
|
|
|
model_name = sys.argv[1]
|
|
dir_out = Path(sys.argv[2])
|
|
|
|
# make sure the output directory exists
|
|
dir_out.mkdir(exist_ok=True)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
ftype = 1
|
|
if len(sys.argv) > 3:
|
|
ftype = int(sys.argv[3])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
|
|
fname_out = dir_out / f"ggml-model-{Path(model_name).name}-{ftype_str[ftype]}.gguf"
|
|
|
|
|
|
ARCH = gguf.MODEL_ARCH.MPT
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
print("Loading model:", model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True,
|
|
)
|
|
config = model.config
|
|
print("Model loaded:", model_name)
|
|
|
|
block_count = config.n_layers
|
|
gguf_writer.add_name("MPT")
|
|
gguf_writer.add_context_length(config.max_seq_len)
|
|
gguf_writer.add_embedding_length(config.d_model)
|
|
gguf_writer.add_block_count(block_count)
|
|
gguf_writer.add_head_count(config.n_heads)
|
|
gguf_writer.add_max_alibi_bias(config.attn_config.alibi_bias_max)
|
|
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
|
|
gguf_writer.add_file_type(ftype)
|
|
|
|
clip_qkv = config.attn_config.clip_qkv
|
|
if clip_qkv is not None:
|
|
gguf_writer.add_clamp_kqv(clip_qkv)
|
|
|
|
print("gguf: get gpt2 tokenizer vocab")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
special_ids = tokenizer.all_special_ids
|
|
|
|
tokens: list[bytearray] = []
|
|
toktypes: list[gguf.TokenType] = []
|
|
|
|
# TODO(cebtenzzre): this is probably wrong, but I don't know what else to put here
|
|
dot_token = tokenizer.encode('.')[0]
|
|
|
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
|
for i in range(config.vocab_size):
|
|
text = tokenizer.decode([dot_token, i]).encode('utf-8')
|
|
text = text[1:] # remove the first byte (it's always '.')
|
|
tokens.append(text)
|
|
|
|
# TODO(cebtenzzre): is there a better way to do this?
|
|
toktypes.append(gguf.TokenType.CONTROL if i in special_ids else gguf.TokenType.NORMAL)
|
|
|
|
gguf_writer.add_tokenizer_model("gpt2")
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_types(toktypes)
|
|
|
|
print("gguf: get tensor metadata")
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
|
|
|
list_vars = model.state_dict()
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Processing variable:", name, "with shape:", data.shape)
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0
|
|
# Keep token embeddings in fp32
|
|
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
elif ftype == 1 or data.dtype != np.float32:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# map tensor names
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
if new_name is None:
|
|
print("Can not map tensor '" + name + "'")
|
|
sys.exit()
|
|
|
|
gguf_writer.add_tensor(new_name, data)
|
|
|
|
|
|
print("gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print("gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print("gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
gguf_writer.close()
|
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
print()
|