# Convert Hugging Face fine-tuned bloom-like models to ggml format # # Usage: # # python3 models/convert-h5-to-ggml.py # # This script is similar to "convert-pt-to-ggml.py" # from __future__ import annotations import json import os import struct import sys from pathlib import Path import gguf import numpy as np import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if not 3 <= len(sys.argv) < 5: print("Usage: python {} model-name dir-output [ftype]".format(Path(__file__).name)) print(" model-name: name of the model to convert. Example: 'bigscience/bloomz-560m'") print(" dir-output: directory where the output file will be written") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) model_name = sys.argv[1] dir_out = Path(sys.argv[2]) # make sure the output directory exists dir_out.mkdir(exist_ok=True) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 3: ftype = int(sys.argv[3]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = dir_out / f"ggml-model-{Path(model_name).name}-{ftype_str[ftype]}.gguf" ARCH = gguf.MODEL_ARCH.MPT gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) print("gguf: get model metadata") config = AutoConfig.from_pretrained(model_name) print("Loading model:", model_name) model = AutoModelForCausalLM.from_pretrained( model_name, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True, ) config = model.config print("Model loaded:", model_name) block_count = config.n_layers gguf_writer.add_name("MPT") gguf_writer.add_context_length(config.max_seq_len) gguf_writer.add_embedding_length(config.d_model) gguf_writer.add_block_count(block_count) gguf_writer.add_head_count(config.n_heads) gguf_writer.add_max_alibi_bias(config.attn_config.alibi_bias_max) gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon) gguf_writer.add_file_type(ftype) clip_qkv = config.attn_config.clip_qkv if clip_qkv is not None: gguf_writer.add_clamp_kqv(clip_qkv) print("gguf: get gpt2 tokenizer vocab") tokenizer = AutoTokenizer.from_pretrained(model_name) special_ids = tokenizer.all_special_ids tokens: list[bytearray] = [] toktypes: list[gguf.TokenType] = [] # TODO(cebtenzzre): this is probably wrong, but I don't know what else to put here dot_token = tokenizer.encode('.')[0] # The number of tokens in tokenizer.json can differ from the expected vocab size. # This causes downstream issues with mismatched tensor sizes when running the inference for i in range(config.vocab_size): text = tokenizer.decode([dot_token, i]).encode('utf-8') text = text[1:] # remove the first byte (it's always '.') tokens.append(text) # TODO(cebtenzzre): is there a better way to do this? toktypes.append(gguf.TokenType.CONTROL if i in special_ids else gguf.TokenType.NORMAL) gguf_writer.add_tokenizer_model("gpt2") gguf_writer.add_token_list(tokens) gguf_writer.add_token_types(toktypes) print("gguf: get tensor metadata") tensor_map = gguf.get_tensor_name_map(ARCH, block_count) list_vars = model.state_dict() for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable:", name, "with shape:", data.shape) n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 # Keep token embeddings in fp32 if ftype == 1 and name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 elif ftype == 1 or data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() print("gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() print(f"gguf: model successfully exported to '{fname_out}'") print()