backend: port MPT to GGUF

This commit is contained in:
Cebtenzzre 2023-09-28 09:33:39 -04:00 committed by Adam Treat
parent 42bcb814b3
commit 7c67262a13
4 changed files with 376 additions and 395 deletions

View File

@ -112,10 +112,10 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
falcon.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
target_compile_definitions(falcon-${BUILD_VARIANT} PRIVATE LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
prepare_target(falcon llama-mainline)
# FIXME: These need to be forward ported to latest ggml
# add_library(mpt-${BUILD_VARIANT} SHARED
# mpt.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
# prepare_target(mpt ggml-230511)
add_library(mpt-${BUILD_VARIANT} SHARED
mpt.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
prepare_target(mpt llama-mainline)
add_library(bert-${BUILD_VARIANT} SHARED
bert.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)

View File

@ -46,8 +46,8 @@ struct mpt_hparams {
int32_t n_layer = 32;
float alibi_bias_max = 8;
float clip_qkv = 0;
float norm_eps = 1e-5;
int32_t expand = 4;
int32_t f16 = 1;
};
struct mpt_layer {
@ -92,6 +92,11 @@ struct mpt_model {
}
};
enum mpt_token_type {
MPT_TOKEN_TYPE_NORMAL = 1,
MPT_TOKEN_TYPE_CONTROL = 3,
};
static bool kv_cache_init(
const struct mpt_hparams & hparams,
struct llm_kv_cache & cache,
@ -123,20 +128,62 @@ static bool kv_cache_init(
return true;
}
// load the model's weights from a stream. if mem_req ptr is passed the model is
// load the model's weights from a file path. if mem_req ptr is passed the model is
// only partially parsed to estimate required memory
bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & model, gpt_vocab & vocab, size_t * mem_req) {
bool mpt_model_load(const std::string &fname, mpt_model & model, gpt_vocab & vocab, size_t * mem_req) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
if (mem_req != nullptr) {
*mem_req = 0;
}
// verify magic
// create the ggml context
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &model.ctx,
};
gguf_context *ggufctx = gguf_init_from_file(fname.c_str(), params);
if (!ggufctx) {
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
return false;
}
printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
// print some standard metadata
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6d) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
int keyidx;
keyidx = gguf_find_key(ggufctx, "general.name");
if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.description");
if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.author");
if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.license");
if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.file_type");
if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository");
if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
}
// check required metadata
{
// check model architecture kv
int keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx == -1) {
fprintf(stderr, "%s: gguf model architecture not found!\n", __func__);
return false;
}
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "mpt") != 0) {
fprintf(stderr, "%s: model architecture not supported!\n", __func__);
return false;
}
}
@ -145,182 +192,150 @@ bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & mod
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max));
fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
bool ok = false;
int keyidx;
do {
keyidx = gguf_find_key(ggufctx, "mpt.context_length");
if (keyidx == -1) { break; }
hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "mpt.embedding_length");
if (keyidx == -1) { break; }
hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "mpt.attention.head_count");
if (keyidx == -1) { break; }
hparams.n_head = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "mpt.block_count");
if (keyidx == -1) { break; }
hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "mpt.attention.max_alibi_bias");
if (keyidx == -1) { break; }
hparams.alibi_bias_max = gguf_get_val_f32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "mpt.attention.clamp_kqv");
if (keyidx != -1) { // optional
hparams.clip_qkv = gguf_get_val_f32(ggufctx, keyidx);
}
keyidx = gguf_find_key(ggufctx, "mpt.attention.layer_norm_epsilon");
if (keyidx == -1) { break; }
hparams.norm_eps = gguf_get_val_f32(ggufctx, keyidx);
ok = true;
} while (false);
if (!ok) {
fprintf(stderr, "%s: required hparam missing!\n", __func__);
return false;
}
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv);
printf("%s: ftype = %d\n", __func__, hparams.f16);
}
// load vocab
{
int32_t n_vocab = model.hparams.n_vocab;
fin.read((char *) &n_vocab, sizeof(n_vocab));
auto & hparams = model.hparams;
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
if (keyidx == -1) {
fprintf(stderr, "%s: tokenizer model not found!\n", __func__);
return false;
}
// TODO: Replit (llama tokenizer)
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
fprintf(stderr, "%s: tokenizer model not supported!\n", __func__);
return false;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
if (tokens_keyidx == -1) {
fprintf(stderr, "%s: gpt2 tokenizer vocab not found!\n", __func__);
return false;
}
int toktypes_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.token_type");
if (toktypes_keyidx == -1) {
fprintf(stderr, "%s: gpt2 token types not found!\n", __func__);
return false;
}
hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx);
printf("%s: gpt2 tokenizer vocab = %d\n", __func__, int(hparams.n_vocab));
const auto *toktypes = reinterpret_cast<const uint32_t *>(gguf_get_arr_data(ggufctx, toktypes_keyidx));
for (int i = 0; i < hparams.n_vocab; i++) {
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
bool special = false;
if (len & (1<<31)) {
len = len &~ (1<<31);
if (toktypes[i] == MPT_TOKEN_TYPE_CONTROL) {
special = true;
} else if (toktypes[i] != MPT_TOKEN_TYPE_NORMAL) {
fprintf(stderr, "%s: unknown token type: %d\n", __func__, int(toktypes[i]));
return false;
}
if (len > 0) {
word.resize(len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
if(special) {
if (special) {
vocab.add_special_token(word);
}
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (model.hparams.f16) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
case 2: wtype = GGML_TYPE_Q4_0; break;
case 3: wtype = GGML_TYPE_Q4_1; break;
case 5: wtype = GGML_TYPE_Q4_2; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.f16);
return false;
}
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
const int expand = hparams.expand;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_w
ctx_size += n_embd*n_vocab*ggml_type_sizef(GGML_TYPE_F32); // wte
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // norm_1_w
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // norm_2_w
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // attn_Wqkv_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // attn_out_proj_w
ctx_size += n_layer*(expand*n_embd*n_embd*ggml_type_sizef(wtype)); // ffn_up_proj_w
ctx_size += n_layer*(expand*n_embd*n_embd*ggml_type_sizef(wtype)); // ffn_down_proj_w
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v
// TODO probably less now?
ctx_size += (5 + 10*n_layer)*256; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
size_t ctx_size = ggml_get_mem_size(ctx);
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
if (mem_req != nullptr) {
*mem_req += ctx_size;
const int n_embd = model.hparams.n_embd;
const int n_layer = model.hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*model.hparams.n_ctx;
const int64_t n_elements = n_embd*n_mem;
*mem_req += (2u*n_elements*ggml_type_size(wtype) + 2_MiB);
*mem_req = ctx_size;
gguf_free(ggufctx);
return false;
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
model.layers.resize(hparams.n_layer);
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
const int expand = hparams.expand;
model.wte = ggml_get_tensor(ctx, "token_embd.weight");
model.norm_f_w = ggml_get_tensor(ctx, "output_norm.weight");
model.layers.resize(n_layer);
auto name = [](int i, std::string n) {
static std::string key;
key = "blk." + std::to_string(i) + "." + n;
return key.c_str();
};
model.wte = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
model.norm_f_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
for (int i = 0; i < hparams.n_layer; ++i) {
auto &layer = model.layers[i];
// map by name
model.tensors["transformer.wte.weight"] = model.wte;
model.tensors["transformer.norm_f.weight"] = model.norm_f_w;
layer.norm_1_w = ggml_get_tensor(ctx, name(i, "attn_norm.weight"));
layer.norm_2_w = ggml_get_tensor(ctx, name(i, "ffn_norm.weight"));
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.norm_1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.norm_2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.attn_Wqkv_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd * 3);
layer.attn_out_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.ffn_up_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, expand*n_embd);
layer.ffn_down_proj_w = ggml_new_tensor_2d(ctx, wtype, expand*n_embd, n_embd);
// map by name
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.attn_Wqkv_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.attn_out_proj_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj_w;
layer.attn_Wqkv_w = ggml_get_tensor(ctx, name(i, "attn_qkv.weight"));
layer.attn_out_proj_w = ggml_get_tensor(ctx, name(i, "attn_output.weight"));
layer.ffn_up_proj_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight"));
layer.ffn_down_proj_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight"));
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const auto &hparams = model.hparams;
if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
ggml_free(ctx);
@ -331,101 +346,12 @@ bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & mod
printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%" PRId64 ", %" PRId64 "], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ttype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
model.scr0_buf.resize(256u * 1024 * 1024);
model.scr1_buf.resize(256u * 1024 * 1024);
return true;
}
// load the model's weights from a file path
bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab) {
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
bool loaded = mpt_model_load(fname, fin, model, vocab, nullptr);
fin.close();
return loaded;
}
bool mpt_eval(
mpt_model & model,
const int n_threads,
@ -467,7 +393,6 @@ bool mpt_eval(
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
@ -484,7 +409,7 @@ bool mpt_eval(
{
// norm1
cur = ggml_norm(ctx0, cur);
cur = ggml_norm(ctx0, cur, model.hparams.norm_eps);
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].norm_1_w, cur),
cur);
@ -535,7 +460,9 @@ bool mpt_eval(
// Alibi
struct ggml_tensor * KQ_scaled_biased = ggml_alibi(ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head);
struct ggml_tensor * KQ_scaled_biased = ggml_alibi(
ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head, model.hparams.alibi_bias_max
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_biased, n_past);
@ -575,7 +502,7 @@ bool mpt_eval(
{
cur = resSA;
// norm2
cur = ggml_norm(ctx0, cur);
cur = ggml_norm(ctx0, cur, model.hparams.norm_eps);
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].norm_2_w, cur),
cur);
@ -598,7 +525,7 @@ bool mpt_eval(
struct ggml_tensor * out = inpL;
// -> logits
{
out = ggml_norm(ctx0, out);
out = ggml_norm(ctx0, out, model.hparams.norm_eps);
out = ggml_mul(ctx0,
ggml_repeat(ctx0, model.norm_f_w, out),
out);
@ -606,10 +533,19 @@ bool mpt_eval(
out = ggml_mul_mat(ctx0, model.wte, out);
}
ggml_build_forward_expand(&gf, out);
// run the computation
ggml_build_forward_expand(&gf, out);
ggml_graph_compute (ctx0, &gf);
{
std::unique_ptr<uint8_t []> data;
auto plan = ggml_graph_plan(&gf, n_threads);
if (plan.work_size > 0) {
data.reset(new uint8_t[plan.work_size]);
plan.work_data = data.get();
}
ggml_graph_compute(&gf, &plan);
}
// return result for just the last token
@ -744,7 +680,7 @@ struct MPTPrivate {
int64_t n_threads = 0;
size_t mem_per_token = 0;
std::mt19937 rng;
bool has_im_end = false;
bool has_end_of_text = false;
};
MPT::MPT()
@ -758,8 +694,7 @@ size_t MPT::requiredMem(const std::string &modelPath) {
mpt_model dummy_model;
gpt_vocab dummy_vocab;
size_t mem_req;
auto fin = std::ifstream(modelPath, std::ios::binary);
mpt_model_load(modelPath, fin, dummy_model, dummy_vocab, &mem_req);
mpt_model_load(modelPath, dummy_model, dummy_vocab, &mem_req);
return mem_req;
}
@ -767,17 +702,15 @@ bool MPT::loadModel(const std::string &modelPath) {
std::mt19937 rng(time(NULL));
d_ptr->rng = rng;
auto fin = std::ifstream(modelPath, std::ios::binary);
// load the model
if (!mpt_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab, nullptr)) {
if (!mpt_model_load(modelPath, *d_ptr->model, d_ptr->vocab, nullptr)) {
std::cerr << "MPT ERROR: failed to load model from " << modelPath;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
d_ptr->has_im_end = d_ptr->vocab.token_to_id.find("<|im_end|>") != d_ptr->vocab.token_to_id.end();
d_ptr->has_end_of_text = d_ptr->vocab.token_to_id.find("<|im_end|>") != d_ptr->vocab.token_to_id.end();
fflush(stdout);
return true;
}
@ -862,6 +795,16 @@ const std::vector<LLModel::Token> &MPT::endTokens() const
return fres;
}
std::string get_arch_name(gguf_context *ctx_gguf) {
std::string arch_name;
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
if (ktype != GGUF_TYPE_STRING) {
throw std::runtime_error("ERROR: Can't get general architecture from gguf file.");
}
return gguf_get_val_str(ctx_gguf, kid);
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
@ -881,10 +824,21 @@ DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(std::istream& f) {
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
return magic == 0x67676d6d;
DLL_EXPORT bool magic_match(const char * fname) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
if (!ctx_gguf)
return false;
bool isValid = gguf_get_version(ctx_gguf) <= 2;
isValid = isValid && get_arch_name(ctx_gguf) == "mpt";
gguf_free(ctx_gguf);
return isValid;
}
DLL_EXPORT LLModel *construct() {

View File

@ -1,145 +0,0 @@
# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 models/convert-h5-to-ggml.py
#
# This script is similar to "convert-pt-to-ggml.py"
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 3:
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" use-f32: if present, use float32 instead of float16")
sys.exit(1)
model_name = sys.argv[1]
dir_out = sys.argv[2]
# make sure the output directory exists
os.makedirs(dir_out, exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = 0
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
hparams = config.to_dict()
print("Loading model: ", model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True)
print("Model loaded: ", model_name)
fname_out = dir_out + f"/ggml-model-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
fout = open(fname_out, "wb")
vocab = tokenizer.vocab
hparams["multiple_of"] = 1
fout.write(struct.pack("I", 0x67676d6d)) # magic: ggml in hex
fout.write(struct.pack("I", model.config.vocab_size))
fout.write(struct.pack("I", model.config.max_seq_len))
fout.write(struct.pack("I", model.config.n_layers))
fout.write(struct.pack("I", model.config.n_heads))
fout.write(struct.pack("I", model.config.d_model))
fout.write(struct.pack("f", model.config.attn_config['alibi_bias_max']))
clip_qkv = model.config.attn_config['clip_qkv']
fout.write(struct.pack("f", clip_qkv if clip_qkv is not None else 0))
fout.write(struct.pack("I", ftype))
# # Is this correct??
# dot_token = tokenizer.encode(".")[0]
# write tokens to ggml file
dot_token = tokenizer.encode('.')[0]
fout.write(struct.pack("I", model.config.vocab_size))
for i in range(model.config.vocab_size):
text = tokenizer.decode([dot_token, i]).encode('utf-8')
# remove the first byte (it's always '.')
text = text[1:]
enclen = len(text)
if i in tokenizer.all_special_ids:
print(f"special token: {text}")
enclen = enclen | 1<<31
fout.write(struct.pack("I", enclen))
fout.write(text)
list_vars = model.state_dict()
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape)
n_dims = len(data.shape);
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0;
if ftype != 0:
# Keep token embeddings in fp32
if name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")

View File

@ -0,0 +1,172 @@
# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 models/convert-h5-to-ggml.py
#
# This script is similar to "convert-pt-to-ggml.py"
#
from __future__ import annotations
import json
import os
import struct
import sys
from pathlib import Path
import gguf
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if not 3 <= len(sys.argv) < 5:
print("Usage: python {} model-name dir-output [ftype]".format(Path(__file__).name))
print(" model-name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
model_name = sys.argv[1]
dir_out = Path(sys.argv[2])
# make sure the output directory exists
dir_out.mkdir(exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = int(sys.argv[3])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = dir_out / f"ggml-model-{Path(model_name).name}-{ftype_str[ftype]}.gguf"
ARCH = gguf.MODEL_ARCH.MPT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
config = AutoConfig.from_pretrained(model_name)
print("Loading model:", model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True,
)
config = model.config
print("Model loaded:", model_name)
block_count = config.n_layers
gguf_writer.add_name("MPT")
gguf_writer.add_context_length(config.max_seq_len)
gguf_writer.add_embedding_length(config.d_model)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(config.n_heads)
gguf_writer.add_max_alibi_bias(config.attn_config.alibi_bias_max)
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
gguf_writer.add_file_type(ftype)
clip_qkv = config.attn_config.clip_qkv
if clip_qkv is not None:
gguf_writer.add_clamp_kqv(clip_qkv)
print("gguf: get gpt2 tokenizer vocab")
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_ids = tokenizer.all_special_ids
tokens: list[bytearray] = []
toktypes: list[gguf.TokenType] = []
# TODO(cebtenzzre): this is probably wrong, but I don't know what else to put here
dot_token = tokenizer.encode('.')[0]
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
for i in range(config.vocab_size):
text = tokenizer.decode([dot_token, i]).encode('utf-8')
text = text[1:] # remove the first byte (it's always '.')
tokens.append(text)
# TODO(cebtenzzre): is there a better way to do this?
toktypes.append(gguf.TokenType.CONTROL if i in special_ids else gguf.TokenType.NORMAL)
gguf_writer.add_tokenizer_model("gpt2")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
print("gguf: get tensor metadata")
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
list_vars = model.state_dict()
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable:", name, "with shape:", data.shape)
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
# Keep token embeddings in fp32
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1 or data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print()