xmr-btc-swap/monero-adaptor/tests/integration_test.rs
2021-05-11 11:51:29 +10:00

395 lines
11 KiB
Rust

#![allow(non_snake_case)]
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint};
use curve25519_dalek::scalar::Scalar;
use hash_edwards_to_edwards::hash_point_to_point;
use monero::blockdata::transaction::{ExtraField, KeyImage, SubField, TxOutTarget};
use monero::cryptonote::hash::Hashable;
use monero::cryptonote::onetime_key::{KeyGenerator, MONERO_MUL_FACTOR};
use monero::util::key::H;
use monero::util::ringct::{EcdhInfo, RctSig, RctSigBase, RctSigPrunable, RctType};
use monero::{
PrivateKey, PublicKey, Transaction, TransactionPrefix, TxIn, TxOut, VarInt, ViewPair,
};
use monero_harness::Monero;
use monero_rpc::monerod::{GetOutputsOut, MonerodRpc};
use monero_wallet::MonerodClientExt;
use rand::rngs::OsRng;
use rand::{CryptoRng, Rng, SeedableRng};
use std::convert::TryInto;
use std::iter;
use testcontainers::clients::Cli;
#[tokio::test]
async fn monerod_integration_test() {
let mut rng = rand::rngs::StdRng::from_seed([0u8; 32]);
let cli = Cli::default();
let (monero, _monerod_container, _monero_wallet_rpc_containers) =
Monero::new(&cli, vec![]).await.unwrap();
let s_a = curve25519_dalek::scalar::Scalar::random(&mut rng);
let s_b = curve25519_dalek::scalar::Scalar::random(&mut rng);
let lock_kp = monero::KeyPair {
view: monero::PrivateKey::from_scalar(curve25519_dalek::scalar::Scalar::random(&mut rng)),
spend: monero::PrivateKey::from_scalar(s_a + s_b),
};
let lock_amount = 1_000_000_000_000;
let fee = 400_000_000;
let spend_amount = lock_amount - fee;
let lock_address = monero::Address::from_keypair(monero::Network::Mainnet, &lock_kp);
dbg!(lock_address.to_string()); // 45BcRKAHaA4b5A9SdamF2f1w7zk1mKkBPhaqVoDWzuAtMoSAytzm5A6b2fE6ruupkAFmStrQzdojUExt96mR3oiiSKp8Exf
monero.init_miner().await.unwrap();
let wallet = monero.wallet("miner").expect("wallet to exist");
let transfer = wallet
.transfer(&lock_address.to_string(), lock_amount)
.await
.expect("lock to succeed");
let client = monero.monerod().client();
let miner_address = wallet
.address()
.await
.expect("miner address to exist")
.address;
client
.generateblocks(10, miner_address)
.await
.expect("can generate blocks");
let lock_tx = transfer.tx_hash.parse().unwrap();
let o_indexes_response = client.get_o_indexes(lock_tx).await.unwrap();
let transaction = client
.get_transactions(&[lock_tx])
.await
.unwrap()
.pop()
.unwrap();
dbg!(&transaction.prefix.inputs);
let viewpair = ViewPair::from(&lock_kp);
let our_output = transaction
.check_outputs(&viewpair, 0..1, 0..1)
.expect("to have outputs in this transaction")
.pop()
.expect("to own at least one output");
let actual_lock_amount = transaction.get_amount(&viewpair, &our_output).unwrap();
assert_eq!(actual_lock_amount, lock_amount);
let real_key_offset = o_indexes_response.o_indexes[our_output.index];
let (lower, upper) = client.calculate_key_offset_boundaries().await.unwrap();
let mut key_offsets = Vec::with_capacity(11);
key_offsets.push(VarInt(real_key_offset));
for _ in 0..10 {
loop {
let decoy_offset = VarInt(rng.gen_range(lower.0, upper.0));
if key_offsets.contains(&decoy_offset) {
continue;
}
key_offsets.push(decoy_offset);
break;
}
}
dbg!(&key_offsets);
let response = client
.get_outs(
key_offsets
.iter()
.map(|offset| GetOutputsOut {
amount: 0,
index: offset.0,
})
.collect(),
)
.await
.unwrap();
dbg!(&response);
let ring = response
.outs
.iter()
.map(|out| out.key.point.decompress().unwrap())
.collect::<Vec<_>>()
.try_into()
.unwrap();
key_offsets.sort();
let relative_key_offsets = to_relative_offsets(&key_offsets);
dbg!(&relative_key_offsets);
let target_address = "498AVruCDWgP9Az9LjMm89VWjrBrSZ2W2K3HFBiyzzrRjUJWUcCVxvY1iitfuKoek2FdX6MKGAD9Qb1G1P8QgR5jPmmt3Vj".parse::<monero::Address>().unwrap();
let ecdh_key_0 = PrivateKey::random(&mut rng);
let (ecdh_info_0, out_blinding_0) = EcdhInfo::new_bulletproof(spend_amount, ecdh_key_0.scalar);
let ecdh_key_1 = PrivateKey::random(&mut rng);
let (ecdh_info_1, out_blinding_1) = EcdhInfo::new_bulletproof(spend_amount, ecdh_key_1.scalar);
let (bulletproof, out_pk) = monero::make_bulletproof(
&mut rng,
&[spend_amount, 0],
&[out_blinding_0, out_blinding_1],
)
.unwrap();
let k_image = {
let k = lock_kp.spend.scalar;
let K = ViewPair::from(&lock_kp).spend.point;
let k_image = k * hash_point_to_point(K.decompress().unwrap());
KeyImage {
image: monero::cryptonote::hash::Hash(k_image.compress().to_bytes()),
}
};
let prefix = TransactionPrefix {
version: VarInt(2),
unlock_time: Default::default(),
inputs: vec![TxIn::ToKey {
amount: VarInt(0),
key_offsets: relative_key_offsets,
k_image,
}],
outputs: vec![
TxOut {
amount: VarInt(0),
target: TxOutTarget::ToKey {
key: KeyGenerator::from_random(
target_address.public_view,
target_address.public_spend,
ecdh_key_0,
)
.one_time_key(0), // TODO: This must be the output index
},
},
TxOut {
amount: VarInt(0),
target: TxOutTarget::ToKey {
key: KeyGenerator::from_random(
target_address.public_view,
target_address.public_spend,
ecdh_key_1,
)
.one_time_key(1), // TODO: This must be the output index
},
},
],
extra: ExtraField(vec![
SubField::TxPublicKey(PublicKey::from_private_key(&ecdh_key_0)),
SubField::TxPublicKey(PublicKey::from_private_key(&ecdh_key_1)),
]),
};
// assert_eq!(prefix.hash(),
// "c3ded4d1a8cddd4f76c09b63edff4e312e759b3afc46beda4e1fd75c9c68d997".parse().
// unwrap());
let s_prime_a = s_a
+ KeyGenerator::from_key(&viewpair, our_output.tx_pubkey)
.get_rvn_scalar(our_output.index)
.scalar;
let commitment_ring = response
.outs
.iter()
.map(|out| CompressedEdwardsY(out.mask.key).decompress().unwrap())
.collect::<Vec<_>>()
.try_into()
.unwrap();
let out_pk = out_pk
.into_iter()
.map(|p| (p.decompress().unwrap() * Scalar::from(MONERO_MUL_FACTOR)).compress())
.collect::<Vec<_>>();
let fee_key = Scalar::from(fee) * H.point.decompress().unwrap();
let pseudo_out = fee_key + out_pk[0].decompress().unwrap() + out_pk[1].decompress().unwrap();
let (_, real_commitment_blinder) = transaction.clone().rct_signatures.sig.unwrap().ecdh_info
[our_output.index]
.open_commitment(&viewpair, &our_output.tx_pubkey, our_output.index);
let (adaptor_sig, adaptor) = single_party_adaptor_sig(
s_prime_a,
s_b,
ring,
commitment_ring,
pseudo_out,
real_commitment_blinder,
(out_blinding_0 + out_blinding_1) * Scalar::from(MONERO_MUL_FACTOR),
&prefix.hash().to_bytes(),
&mut rng,
);
let sig = adaptor_sig.adapt(adaptor);
let out_pk = out_pk
.iter()
.map(|c| monero::util::ringct::CtKey {
mask: monero::util::ringct::Key { key: c.to_bytes() },
})
.collect::<Vec<_>>();
let transaction = Transaction {
prefix,
signatures: Vec::new(),
rct_signatures: RctSig {
sig: Some(RctSigBase {
rct_type: RctType::Clsag,
txn_fee: VarInt(fee),
pseudo_outs: Vec::new(),
ecdh_info: vec![ecdh_info_0, ecdh_info_1],
out_pk,
}),
p: Some(RctSigPrunable {
range_sigs: Vec::new(),
bulletproofs: vec![bulletproof],
MGs: Vec::new(),
Clsags: vec![sig.into()],
pseudo_outs: vec![monero::util::ringct::Key {
key: pseudo_out.compress().0,
}],
}),
},
};
client.send_raw_transaction(transaction).await.unwrap();
}
fn to_relative_offsets(offsets: &[VarInt]) -> Vec<VarInt> {
let vals = offsets.iter();
let next_vals = offsets.iter().skip(1);
let diffs = vals
.zip(next_vals)
.map(|(cur, next)| VarInt(next.0 - cur.0));
iter::once(offsets[0].clone()).chain(diffs).collect()
}
/// First element of ring is the real pk.
fn single_party_adaptor_sig(
s_prime_a: Scalar,
s_b: Scalar,
ring: [EdwardsPoint; 11],
commitment_ring: [EdwardsPoint; 11],
pseudo_output_commitment: EdwardsPoint,
real_commitment_blinding: Scalar,
pseudo_output_commitment_blinding: Scalar,
msg: &[u8; 32],
rng: &mut (impl Rng + CryptoRng),
) -> (monero_adaptor::AdaptorSignature, Scalar) {
let (r_a, R_a, R_prime_a) = {
let r_a = Scalar::random(&mut OsRng);
let R_a = r_a * ED25519_BASEPOINT_POINT;
let pk_hashed_to_point = hash_point_to_point(ring[0]);
let R_prime_a = r_a * pk_hashed_to_point;
(r_a, R_a, R_prime_a)
};
let alice = monero_adaptor::Alice0::new(
ring,
*msg,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_prime_a,
rng,
)
.unwrap();
let bob = monero_adaptor::Bob0::new(
ring,
*msg,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_b,
rng,
)
.unwrap();
let msg = alice.next_message(rng);
let bob = bob.receive(msg);
let z = real_commitment_blinding - pseudo_output_commitment_blinding;
let msg = bob.next_message(rng);
let alice = alice.receive(msg, z).unwrap();
let msg = alice.next_message();
let bob = bob.receive(msg, z).unwrap();
let msg = bob.next_message();
let alice = alice.receive(msg);
(alice.adaptor_sig, r_a)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn calculate_relative_key_offsets() {
let key_offsets = [
VarInt(78),
VarInt(81),
VarInt(91),
VarInt(91),
VarInt(96),
VarInt(98),
VarInt(101),
VarInt(112),
VarInt(113),
VarInt(114),
VarInt(117),
];
let relative_offsets = to_relative_offsets(&key_offsets);
assert_eq!(
&relative_offsets,
&[
VarInt(78),
VarInt(3),
VarInt(10),
VarInt(0),
VarInt(5),
VarInt(2),
VarInt(3),
VarInt(11),
VarInt(1),
VarInt(1),
VarInt(3),
]
)
}
}