Extract clsag module

This commit is contained in:
Thomas Eizinger 2021-05-11 11:51:29 +10:00
parent 2abc7799e1
commit ec3c358795
No known key found for this signature in database
GPG Key ID: 651AC83A6C6C8B96
3 changed files with 312 additions and 300 deletions

300
monero-adaptor/src/clsag.rs Normal file
View File

@ -0,0 +1,300 @@
use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint};
use curve25519_dalek::scalar::Scalar;
use hash_edwards_to_edwards::hash_point_to_point;
use tiny_keccak::{Hasher, Keccak};
use crate::ring::Ring;
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
pub const RING_SIZE: usize = 11;
const HASH_KEY_CLSAG_AGG_0: &str = "CLSAG_agg_0";
const HASH_KEY_CLSAG_AGG_1: &str = "CLSAG_agg_1";
const HASH_KEY_CLSAG_ROUND: &str = "CLSAG_round";
struct AggregationHashes {
mu_P: Scalar,
mu_C: Scalar,
}
impl AggregationHashes {
pub fn new(
ring: &Ring,
commitment_ring: &Ring,
I: EdwardsPoint,
pseudo_output_commitment: EdwardsPoint,
D: EdwardsPoint,
) -> Self {
let I = I.compress();
let D = D.compress();
let pseudo_output_commitment = pseudo_output_commitment.compress();
let mu_P = Self::hash(
HASH_KEY_CLSAG_AGG_0,
ring.as_ref(),
commitment_ring.as_ref(),
&I,
&D,
&pseudo_output_commitment,
);
let mu_C = Self::hash(
HASH_KEY_CLSAG_AGG_1,
ring.as_ref(),
commitment_ring.as_ref(),
&I,
&D,
&pseudo_output_commitment,
);
Self { mu_P, mu_C }
}
// aggregation hashes:
// mu_{P, C} =
// keccak256("CLSAG_agg_{0, 1}" ||
// ring || ring of commitments || I || z * hash_to_point(signing pk) ||
// pseudooutput commitment)
//
// where z = blinding of real commitment - blinding of pseudooutput commitment.
fn hash(
domain_prefix: &str,
ring: &[u8],
commitment_ring: &[u8],
I: &CompressedEdwardsY,
z_key_image: &CompressedEdwardsY,
pseudo_output_commitment: &CompressedEdwardsY,
) -> Scalar {
let mut hasher = Keccak::v256();
hasher.update(domain_prefix.as_bytes());
hasher.update(ring);
hasher.update(commitment_ring);
hasher.update(I.as_bytes());
hasher.update(z_key_image.as_bytes());
hasher.update(pseudo_output_commitment.as_bytes());
let mut hash = [0u8; 32];
hasher.finalize(&mut hash);
Scalar::from_bytes_mod_order(hash)
}
}
fn challenge(
prefix: &[u8],
s_i: Scalar,
pk_i: EdwardsPoint,
adjusted_commitment_i: EdwardsPoint,
D: EdwardsPoint,
h_prev: Scalar,
I: EdwardsPoint,
mus: &AggregationHashes,
) -> anyhow::Result<Scalar> {
let L_i = compute_L(h_prev, mus, s_i, pk_i, adjusted_commitment_i);
let R_i = compute_R(h_prev, mus, pk_i, s_i, I, D);
let mut hasher = Keccak::v256();
hasher.update(prefix);
hasher.update(&L_i.compress().as_bytes().to_vec());
hasher.update(&R_i.compress().as_bytes().to_vec());
let mut output = [0u8; 32];
hasher.finalize(&mut output);
Ok(Scalar::from_bytes_mod_order(output))
}
// L_i = s_i * G + c_p * pk_i + c_c * (commitment_i - pseudoutcommitment)
fn compute_L(
h_prev: Scalar,
mus: &AggregationHashes,
s_i: Scalar,
pk_i: EdwardsPoint,
adjusted_commitment_i: EdwardsPoint,
) -> EdwardsPoint {
let c_p = h_prev * mus.mu_P;
let c_c = h_prev * mus.mu_C;
(s_i * ED25519_BASEPOINT_POINT) + (c_p * pk_i) + c_c * adjusted_commitment_i
}
// R_i = s_i * H_p_pk_i + c_p * I + c_c * (z * hash_to_point(signing pk))
fn compute_R(
h_prev: Scalar,
mus: &AggregationHashes,
pk_i: EdwardsPoint,
s_i: Scalar,
I: EdwardsPoint,
D: EdwardsPoint,
) -> EdwardsPoint {
let c_p = h_prev * mus.mu_P;
let c_c = h_prev * mus.mu_C;
let H_p_pk_i = hash_point_to_point(pk_i);
(s_i * H_p_pk_i) + (c_p * I) + c_c * D
}
/// Compute the prefix for the hash common to every iteration of the ring
/// signature algorithm.
///
/// "CLSAG_round" || ring || ring of commitments || pseudooutput commitment ||
/// msg || alpha * G
fn clsag_round_hash_prefix(
ring: &[u8],
commitment_ring: &[u8],
pseudo_output_commitment: EdwardsPoint,
msg: &[u8],
) -> Vec<u8> {
let domain_prefix = HASH_KEY_CLSAG_ROUND.as_bytes();
let pseudo_output_commitment = pseudo_output_commitment.compress();
let pseudo_output_commitment = pseudo_output_commitment.as_bytes();
let mut prefix = Vec::with_capacity(
domain_prefix.len()
+ ring.len()
+ commitment_ring.len()
+ pseudo_output_commitment.len()
+ msg.len(),
);
prefix.extend(domain_prefix);
prefix.extend(ring);
prefix.extend(commitment_ring);
prefix.extend(pseudo_output_commitment);
prefix.extend(msg);
prefix
}
pub fn sign(
fake_responses: [Scalar; RING_SIZE - 1],
ring: Ring,
commitment_ring: Ring,
z: Scalar,
H_p_pk: EdwardsPoint,
pseudo_output_commitment: EdwardsPoint,
L: EdwardsPoint,
R: EdwardsPoint,
I: EdwardsPoint,
msg: &[u8],
signing_key: Scalar,
alpha: Scalar,
) -> anyhow::Result<Signature> {
let D = z * H_p_pk;
let D_inv_8 = D * Scalar::from(8u8).invert();
let prefix = clsag_round_hash_prefix(
ring.as_ref(),
commitment_ring.as_ref(),
pseudo_output_commitment,
msg,
);
let h_0 = {
let mut keccak = Keccak::v256();
keccak.update(&prefix);
keccak.update(L.compress().as_bytes());
keccak.update(R.compress().as_bytes());
let mut output = [0u8; 32];
keccak.finalize(&mut output);
Scalar::from_bytes_mod_order(output)
};
let mus = AggregationHashes::new(&ring, &commitment_ring, I, pseudo_output_commitment, H_p_pk);
let h_last = fake_responses
.iter()
.enumerate()
.fold(h_0, |h_prev, (i, s_i)| {
let pk_i = ring[i + 1];
let adjusted_commitment_i = commitment_ring[i] - pseudo_output_commitment;
// TODO: Do not unwrap here
challenge(
&prefix,
*s_i,
pk_i,
adjusted_commitment_i,
D_inv_8,
h_prev,
I,
&mus,
)
.unwrap()
});
let s_last = alpha - h_last * ((mus.mu_P * signing_key) + (mus.mu_C * z));
Ok(Signature {
responses: [
fake_responses[0],
fake_responses[1],
fake_responses[2],
fake_responses[3],
fake_responses[4],
fake_responses[5],
fake_responses[6],
fake_responses[7],
fake_responses[8],
fake_responses[9],
s_last,
],
h_0,
I,
D,
})
}
pub struct Signature {
pub responses: [Scalar; RING_SIZE],
pub h_0: Scalar,
/// Key image of the real key in the ring.
pub I: EdwardsPoint,
pub D: EdwardsPoint,
}
impl Signature {
#[cfg(test)]
pub fn verify(&self, ring: [EdwardsPoint; RING_SIZE], msg: &[u8; 32]) -> anyhow::Result<bool> {
let ring_concat = ring
.iter()
.flat_map(|pk| pk.compress().as_bytes().to_vec())
.collect::<Vec<u8>>();
let mut h = self.h_0;
for (i, s_i) in self.responses.iter().enumerate() {
let pk_i = ring[(i + 1) % RING_SIZE];
h = challenge(
&clsag_round_hash_prefix(&ring_concat, todo!(), todo!(), msg),
*s_i,
pk_i,
todo!(),
todo!(),
h,
self.I,
todo!(),
)?;
}
Ok(h == self.h_0)
}
}
impl From<Signature> for monero::util::ringct::Clsag {
fn from(from: Signature) -> Self {
Self {
s: from
.responses
.iter()
.map(|s| monero::util::ringct::Key { key: s.to_bytes() })
.collect(),
c1: monero::util::ringct::Key {
key: from.h_0.to_bytes(),
},
D: monero::util::ringct::Key {
key: from.D.compress().to_bytes(),
},
}
}
}

View File

@ -3,91 +3,22 @@
#![allow(non_camel_case_types)]
#![warn(clippy::needless_pass_by_value)]
use std::convert::TryInto;
use anyhow::{bail, Result};
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint};
use curve25519_dalek::scalar::Scalar;
use hash_edwards_to_edwards::hash_point_to_point;
use rand::{CryptoRng, Rng};
use ring::Ring;
use std::convert::TryInto;
use tiny_keccak::{Hasher, Keccak};
use clsag::{Signature, RING_SIZE};
use ring::Ring;
mod clsag;
mod ring;
pub const RING_SIZE: usize = 11;
const HASH_KEY_CLSAG_AGG_0: &str = "CLSAG_agg_0";
const HASH_KEY_CLSAG_AGG_1: &str = "CLSAG_agg_1";
const HASH_KEY_CLSAG_ROUND: &str = "CLSAG_round";
struct AggregationHashes {
mu_P: Scalar,
mu_C: Scalar,
}
impl AggregationHashes {
pub fn new(
ring: &Ring,
commitment_ring: &Ring,
I: EdwardsPoint,
pseudo_output_commitment: EdwardsPoint,
D: EdwardsPoint,
) -> Self {
let I = I.compress();
let D = D.compress();
let pseudo_output_commitment = pseudo_output_commitment.compress();
let mu_P = Self::hash(
HASH_KEY_CLSAG_AGG_0,
ring.as_ref(),
commitment_ring.as_ref(),
&I,
&D,
&pseudo_output_commitment,
);
let mu_C = Self::hash(
HASH_KEY_CLSAG_AGG_1,
ring.as_ref(),
commitment_ring.as_ref(),
&I,
&D,
&pseudo_output_commitment,
);
Self { mu_P, mu_C }
}
// aggregation hashes:
// mu_{P, C} =
// keccak256("CLSAG_agg_{0, 1}" ||
// ring || ring of commitments || I || z * hash_to_point(signing pk) ||
// pseudooutput commitment)
//
// where z = blinding of real commitment - blinding of pseudooutput commitment.
fn hash(
domain_prefix: &str,
ring: &[u8],
commitment_ring: &[u8],
I: &CompressedEdwardsY,
z_key_image: &CompressedEdwardsY,
pseudo_output_commitment: &CompressedEdwardsY,
) -> Scalar {
let mut hasher = Keccak::v256();
hasher.update(domain_prefix.as_bytes());
hasher.update(ring);
hasher.update(commitment_ring);
hasher.update(I.as_bytes());
hasher.update(z_key_image.as_bytes());
hasher.update(pseudo_output_commitment.as_bytes());
let mut hash = [0u8; 32];
hasher.finalize(&mut hash);
Scalar::from_bytes_mod_order(hash)
}
}
// for every iteration we compute:
// c_p = h_prev * mu_P; and
// c_c = h_prev * mu_C.
@ -96,172 +27,6 @@ impl AggregationHashes {
// h = keccak256("CLSAG_round" || ring
// ring of commitments || pseudooutput commitment || msg || L_i || R_i)
fn challenge(
prefix: &[u8],
s_i: Scalar,
pk_i: EdwardsPoint,
adjusted_commitment_i: EdwardsPoint,
D: EdwardsPoint,
h_prev: Scalar,
I: EdwardsPoint,
mus: &AggregationHashes,
) -> Result<Scalar> {
let L_i = compute_L(h_prev, mus, s_i, pk_i, adjusted_commitment_i);
let R_i = compute_R(h_prev, mus, pk_i, s_i, I, D);
let mut hasher = Keccak::v256();
hasher.update(prefix);
hasher.update(&L_i.compress().as_bytes().to_vec());
hasher.update(&R_i.compress().as_bytes().to_vec());
let mut output = [0u8; 32];
hasher.finalize(&mut output);
Ok(Scalar::from_bytes_mod_order(output))
}
// L_i = s_i * G + c_p * pk_i + c_c * (commitment_i - pseudoutcommitment)
fn compute_L(
h_prev: Scalar,
mus: &AggregationHashes,
s_i: Scalar,
pk_i: EdwardsPoint,
adjusted_commitment_i: EdwardsPoint,
) -> EdwardsPoint {
let c_p = h_prev * mus.mu_P;
let c_c = h_prev * mus.mu_C;
(s_i * ED25519_BASEPOINT_POINT) + (c_p * pk_i) + c_c * adjusted_commitment_i
}
// R_i = s_i * H_p_pk_i + c_p * I + c_c * (z * hash_to_point(signing pk))
fn compute_R(
h_prev: Scalar,
mus: &AggregationHashes,
pk_i: EdwardsPoint,
s_i: Scalar,
I: EdwardsPoint,
D: EdwardsPoint,
) -> EdwardsPoint {
let c_p = h_prev * mus.mu_P;
let c_c = h_prev * mus.mu_C;
let H_p_pk_i = hash_point_to_point(pk_i);
(s_i * H_p_pk_i) + (c_p * I) + c_c * D
}
/// Compute the prefix for the hash common to every iteration of the ring
/// signature algorithm.
///
/// "CLSAG_round" || ring || ring of commitments || pseudooutput commitment ||
/// msg || alpha * G
fn clsag_round_hash_prefix(
ring: &[u8],
commitment_ring: &[u8],
pseudo_output_commitment: EdwardsPoint,
msg: &[u8],
) -> Vec<u8> {
let domain_prefix = HASH_KEY_CLSAG_ROUND.as_bytes();
let pseudo_output_commitment = pseudo_output_commitment.compress();
let pseudo_output_commitment = pseudo_output_commitment.as_bytes();
let mut prefix = Vec::with_capacity(
domain_prefix.len()
+ ring.len()
+ commitment_ring.len()
+ pseudo_output_commitment.len()
+ msg.len(),
);
prefix.extend(domain_prefix);
prefix.extend(ring);
prefix.extend(commitment_ring);
prefix.extend(pseudo_output_commitment);
prefix.extend(msg);
prefix
}
fn sign(
fake_responses: [Scalar; RING_SIZE - 1],
ring: Ring,
commitment_ring: Ring,
z: Scalar,
H_p_pk: EdwardsPoint,
pseudo_output_commitment: EdwardsPoint,
L: EdwardsPoint,
R: EdwardsPoint,
I: EdwardsPoint,
msg: &[u8],
signing_key: Scalar,
alpha: Scalar,
) -> Result<Signature> {
let D = z * H_p_pk;
let D_inv_8 = D * Scalar::from(8u8).invert();
let prefix = clsag_round_hash_prefix(
ring.as_ref(),
commitment_ring.as_ref(),
pseudo_output_commitment,
msg,
);
let h_0 = {
let mut keccak = Keccak::v256();
keccak.update(&prefix);
keccak.update(L.compress().as_bytes());
keccak.update(R.compress().as_bytes());
let mut output = [0u8; 32];
keccak.finalize(&mut output);
Scalar::from_bytes_mod_order(output)
};
let mus = AggregationHashes::new(&ring, &commitment_ring, I, pseudo_output_commitment, H_p_pk);
let h_last = fake_responses
.iter()
.enumerate()
.fold(h_0, |h_prev, (i, s_i)| {
let pk_i = ring[i + 1];
let adjusted_commitment_i = commitment_ring[i] - pseudo_output_commitment;
// TODO: Do not unwrap here
challenge(
&prefix,
*s_i,
pk_i,
adjusted_commitment_i,
D_inv_8,
h_prev,
I,
&mus,
)
.unwrap()
});
let s_last = alpha - h_last * ((mus.mu_P * signing_key) + (mus.mu_C * z));
Ok(Signature {
responses: [
fake_responses[0],
fake_responses[1],
fake_responses[2],
fake_responses[3],
fake_responses[4],
fake_responses[5],
fake_responses[6],
fake_responses[7],
fake_responses[8],
fake_responses[9],
s_last,
],
h_0,
I,
D,
})
}
pub struct AdaptorSignature {
s_0: Scalar,
fake_responses: [Scalar; RING_SIZE - 1],
@ -316,60 +81,6 @@ impl AdaptorSignature {
}
}
pub struct Signature {
pub responses: [Scalar; RING_SIZE],
pub h_0: Scalar,
/// Key image of the real key in the ring.
pub I: EdwardsPoint,
pub D: EdwardsPoint,
}
impl Signature {
#[cfg(test)]
fn verify(&self, ring: [EdwardsPoint; RING_SIZE], msg: &[u8; 32]) -> Result<bool> {
let ring_concat = ring
.iter()
.flat_map(|pk| pk.compress().as_bytes().to_vec())
.collect::<Vec<u8>>();
let mut h = self.h_0;
for (i, s_i) in self.responses.iter().enumerate() {
let pk_i = ring[(i + 1) % RING_SIZE];
h = challenge(
&clsag_round_hash_prefix(&ring_concat, todo!(), todo!(), msg),
*s_i,
pk_i,
todo!(),
todo!(),
h,
self.I,
todo!(),
)?;
}
Ok(h == self.h_0)
}
}
impl From<Signature> for monero::util::ringct::Clsag {
fn from(from: Signature) -> Self {
Self {
s: from
.responses
.iter()
.map(|s| monero::util::ringct::Key { key: s.to_bytes() })
.collect(),
c1: monero::util::ringct::Key {
key: from.h_0.to_bytes(),
},
D: monero::util::ringct::Key {
key: from.D.compress().to_bytes(),
},
}
}
}
pub struct Alice0 {
// secret index is always 0
ring: Ring,
@ -454,7 +165,7 @@ impl Alice0 {
msg.pi_b
.verify(ED25519_BASEPOINT_POINT, msg.T_b, self.H_p_pk, msg.I_hat_b)?;
let sig = sign(
let sig = clsag::sign(
self.fake_responses,
self.ring,
self.commitment_ring,
@ -630,7 +341,7 @@ impl Bob1 {
.verify(ED25519_BASEPOINT_POINT, T_a, self.H_p_pk, I_hat_a)?;
let I = I_a + self.I_b;
let sig = sign(
let sig = clsag::sign(
fake_responses,
self.ring,
self.commitment_ring,
@ -838,9 +549,10 @@ pub struct Message3 {
#[cfg(test)]
mod tests {
use super::*;
use rand::rngs::OsRng;
use super::*;
#[test]
fn sign_and_verify_success() {
let msg_to_sign = b"hello world, monero is amazing!!";

View File

@ -293,8 +293,8 @@ fn to_relative_offsets(offsets: &[VarInt]) -> Vec<VarInt> {
fn single_party_adaptor_sig(
s_prime_a: Scalar,
s_b: Scalar,
ring: [EdwardsPoint; monero_adaptor::RING_SIZE],
commitment_ring: [EdwardsPoint; monero_adaptor::RING_SIZE],
ring: [EdwardsPoint; 11],
commitment_ring: [EdwardsPoint; 11],
pseudo_output_commitment: EdwardsPoint,
real_commitment_blinding: Scalar,
pseudo_output_commitment_blinding: Scalar,