3fb6d66cf3
that the device must be reset to get out of trap. This change also breaks a critical path. Signed-off-by: Joachim Strömbergson <joachim@assured.se> |
||
---|---|---|
.. | ||
rtl | ||
tb | ||
toolruns | ||
README.md |
tk1
Introduction
The tk1 core is where information, control and monitoring functionality unique to the TKey1 can be found. This means that it provides more than one distinct functionality accessible via the core API.
API
Access to device information
ADDR_NAME0: 0x00
ADDR_NAME1: 0x01
ADDR_VERSION: 0x02
These addresses provide read only information about the name (type) and version of the device. They can be read by FW as well as applications.
Control of execution mode
ADDR_SWITCH_APP: 0x08
This register controls if the device is executing in FW mode or in App mode. The register can be written once between power cycles, and only by FW. If set the device is in app mode.
Control of RGB LED
ADDR_LED: 0x09
LED_B_BIT: 0
LED_G_BIT: 1
LED_R_BIT: 2
This register control the RGB LED on the TKey device. Setting a bit to one turns the corresponding color on. It can be read and written by FW as well as by Apps.
Control and status of GPIO
ADDR_GPIO: 0x0a
GPIO1_BIT: 0
GPIO2_BIT: 1
GPIO3_BIT: 2
GPIO4_BIT: 3
This register control and provide status access to the four GPIOs on the TKey. GPIO one and two are inputs. They will sample the input level and present it to SW. GPIO three and four are outputs. They will emit either high or low voltage level depending on if the corresponding register is one or zero.
Application introspection
ADDR_APP_START: 0x0c
ADDR_APP_SIZE: 0x0d
These registers provide read only information to the loaded app to itself - where it was loaded and its size. The values are written by FW as part of the loading of the app. The registers can't be written when the ADDR_SWITCH_APP has been set.
Access to Blake2s
ADDR_BLAKE2S: 0x10
This register provides the 32-bit function pointer address to the Blake2s hash function in the FW. It is written by FW during boot. The register can't be written to when the ADDR_SWITCH_APP has been set.
Access to CDI
ADDR_CDI_FIRST: 0x20
ADDR_CDI_LAST: 0x27
These registers provide access to the 256-bit compound device secret calculated by the FW as part of loading an application. The registers are written by the FW. The register can't be written to when the ADDR_SWITCH_APP has been set. Apps can read the CDI and is it as base secret for any secrets it needs to perform its intended use case.
Access to UDI
ADDR_UDI_FIRST: 0x30
ADDR_UDI_LAST: 0x31
These registers provide read access to the 64-bit unique device identity. The UDI is stored as ROM within the FPGA configuration. The registers can't be written to.
RAM memory protecion
ADDR_RAM_ASLR: 0x40
ADDR_RAM_SCRAMBLE: 0x41
These write only registers control how the data in the RAM is scrambled as a way of protecting the data. The ADDR_RAM_ASLR control how the addresses are scrambled. The ADDR_RAM_SCRAMBLE control how the data itself is scrambled. FW writes random values to these registers during boot.
Execution monitor
ADDR_CPU_MON_CTRL: 0x60
ADDR_CPU_MON_FIRST:0x61
ADDR_CPU_MON_LAST: 0x62
These registers control the execution monitor related to the RAM. Once enabled, by writing to ADDR_CPU_MON_CTRL, the memory are defined by ADDR_CPU_MON_FIRST and ADDR_CPU_MON_LAST inclusive will be protected against execution. Typically this will be the application stack and, or heap.
Applications can write to these registers to define the area and then enable the monitor. One enabled, the monitor can't be disabled, and the ADDR_CPU_MON_FIRST and ADDR_CPU_MON_LAST registers can't be changes. This means that an application that wants to use the monitor must define the area first before enabling the monitor.
Once enabled, if the CPU tries to read an instruction from the defined area, the core will force the CPU to instead read an all zero, illegal instruction. This illegal instruction will trigger the CPU to enter its TRAP state, from which it can't returned unless the TKey is power cycled.
The FW will not write to these registers as part of loading an app. The app developer must define the area and enable the monitor to get the protection.
Note that there is a second memory area that is under the protection of the execution monitor - the FW_RAM. The execution protection of this memory is always anabled and the definition of the area is hard coded into the FPGA design.
One feature not obvious from the API is that when the CPU traps, the core will detect that and start flashing the RGB LED with a red light - indicating that the CPU is its trap state and no further execution is possible.
Implementation
The core is implemented as a single module. Future versions will probably be separated into separate modules.