🏌🏼‍♂️Update README

This commit is contained in:
Mia von Steinkirch, Ph.D., M.Sc 2020-01-21 14:53:24 -08:00 committed by GitHub
parent 3c0a64d3b2
commit a8cd9d91c3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -14,39 +14,38 @@ Three conceptual steps are how most data pipelines are designed and structured:
* **Load**: processed data is transported to a final destination.
## Tools & Code Samples
# Subresources
* [Deep Learning](https://github.com/bt3gl/Curated_ETL-and-ML-Pipelines/blob/master/deep_learning_resources.md).
* [Airflow](https://github.com/bt3gl/Curated_ETL-and-ML-Pipelines/blob/master/airflow.md).
# External Resources
### Tools & Code Samples
* [Data science resources](https://github.com/davidyakobovitch/data_science_resources).
* [AWS Data pipeline samples](https://github.com/aws-samples/data-pipeline-samples/tree/master/samples).
#### Airflow
* [Incubator Airflow data pipelining](https://github.com/apache/incubator-airflow)
* [Awesome Airflow Resources](https://github.com/jghoman/awesome-apache-airflow).
* [Airflow in Kubernetes](https://github.com/rolanddb/airflow-on-kubernetes).
* [Astronomer: Airflow as a Service](https://github.com/astronomer/astronomer).
#### Lorte
### Lorte
* [Lorte data pipelining](https://github.com/instacart/lore).
## MOOCs
### MOOCs
#### General Pipelines
* [Coursera's Big Data Pipeline course](https://www.coursera.org/lecture/big-data-integration-processing/big-data-processing-pipelines-c4Wyd).
#### Airflow
* [Udemy's Airflow for Beginners](https://www.udemy.com/airflow-basic-for-beginners/).
## Tutorials & Articles
### Tutorials & Articles
#### 2019
* [How to Code Neat Machine Learning Pipelines](https://www.neuraxio.com/en/blog/neuraxle/2019/10/26/neat-machine-learning-pipelines.html).
## Enterprise Solutions
### Enterprise Solutions
* [Netflix data pipeline](https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905).
* [Netlix data videos](https://www.youtube.com/channel/UC00QATOrSH4K2uOljTnnaKw).
@ -69,7 +68,7 @@ Three conceptual steps are how most data pipelines are designed and structured:
* [Databrick data pipeline](https://databricks.com/blog/2017/03/31/delivering-personalized-shopping-experience-apache-spark-databricks.html).
## Talks
### Talks
* [Industrial Machine Learning Talk](https://www.youtube.com/watch?v=3JYDT8lap5U).