From a8cd9d91c3d19bdfe94ad107a5e069cb5bdd8ed5 Mon Sep 17 00:00:00 2001 From: "Mia von Steinkirch, Ph.D., M.Sc" <1130416+bt3gl@users.noreply.github.com> Date: Tue, 21 Jan 2020 14:53:24 -0800 Subject: [PATCH] =?UTF-8?q?=F0=9F=8F=8C=F0=9F=8F=BC=E2=80=8D=E2=99=82?= =?UTF-8?q?=EF=B8=8FUpdate=20README?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 29 ++++++++++++++--------------- 1 file changed, 14 insertions(+), 15 deletions(-) diff --git a/README.md b/README.md index b7414a0..5ac5224 100644 --- a/README.md +++ b/README.md @@ -14,39 +14,38 @@ Three conceptual steps are how most data pipelines are designed and structured: * **Load**: processed data is transported to a final destination. -## Tools & Code Samples +# Subresources + +* [Deep Learning](https://github.com/bt3gl/Curated_ETL-and-ML-Pipelines/blob/master/deep_learning_resources.md). +* [Airflow](https://github.com/bt3gl/Curated_ETL-and-ML-Pipelines/blob/master/airflow.md). + + +# External Resources + +### Tools & Code Samples * [Data science resources](https://github.com/davidyakobovitch/data_science_resources). * [AWS Data pipeline samples](https://github.com/aws-samples/data-pipeline-samples/tree/master/samples). -#### Airflow -* [Incubator Airflow data pipelining](https://github.com/apache/incubator-airflow) -* [Awesome Airflow Resources](https://github.com/jghoman/awesome-apache-airflow). -* [Airflow in Kubernetes](https://github.com/rolanddb/airflow-on-kubernetes). -* [Astronomer: Airflow as a Service](https://github.com/astronomer/astronomer). - -#### Lorte +### Lorte * [Lorte data pipelining](https://github.com/instacart/lore). -## MOOCs +### MOOCs #### General Pipelines * [Coursera's Big Data Pipeline course](https://www.coursera.org/lecture/big-data-integration-processing/big-data-processing-pipelines-c4Wyd). -#### Airflow -* [Udemy's Airflow for Beginners](https://www.udemy.com/airflow-basic-for-beginners/). - -## Tutorials & Articles +### Tutorials & Articles #### 2019 * [How to Code Neat Machine Learning Pipelines](https://www.neuraxio.com/en/blog/neuraxle/2019/10/26/neat-machine-learning-pipelines.html). -## Enterprise Solutions +### Enterprise Solutions * [Netflix data pipeline](https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905). * [Netlix data videos](https://www.youtube.com/channel/UC00QATOrSH4K2uOljTnnaKw). @@ -69,7 +68,7 @@ Three conceptual steps are how most data pipelines are designed and structured: * [Databrick data pipeline](https://databricks.com/blog/2017/03/31/delivering-personalized-shopping-experience-apache-spark-databricks.html). -## Talks +### Talks * [Industrial Machine Learning Talk](https://www.youtube.com/watch?v=3JYDT8lap5U).