123 lines
5.7 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## quantum machine learning
<br>
### general reviews
<br>
* **[opportunities and challenges for quantum-assisted ml in nisq](https://iopscience.iop.org/article/10.1088/2058-9565/aab859) (2018)**
* **[quantum machine learning: what quantum computing means to data mining](https://www.researchgate.net/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_Data_Mining) (2014)**
* **[quantum machine learning](https://arxiv.org/abs/1611.09347v2) (2016)**
* **[a survey of quantum learning theory](https://arxiv.org/abs/1701.06806) (2017)**
* **[quantum machine learning: a classical perspective](https://arxiv.org/abs/1707.08561) (2017)**
* **[opportunities and challenges for quantum-assisted machine learning in near-term quantum computers](https://arxiv.org/abs/1708.09757) (2017)**
* **[quantum machine learning for data scientists](https://arxiv.org/abs/1804.10068) (2018)**
* **[supervised learning with quantum computers](https://www.springer.com/gp/book/9783319964232) (2018)**
<br>
----
### discrete-variables quantum computing
<br>
#### theory
<br>
* **[quantum statistical inference](https://arxiv.org/abs/1812.04877) (2018)**
* **[quantum hardness of learning shallow classical circuits](https://arxiv.org/abs/1903.02840) (2019)**
<br>
#### variational circuits
<br>
* **[quantum boltzmann machine](https://arxiv.org/abs/1601.02036) (2016)**
* **[quantum perceptron model](https://arxiv.org/abs/1602.04799) (2016)**
* **[quantum autoencoders via quantum adders with genetic algorithms](https://arxiv.org/abs/1709.07409) (2017)**
* **[a quantum hopfield neural network](https://arxiv.org/abs/1710.03599) (2017)**
* **[automated optimization of large quantum circuits with continuous parameters](https://arxiv.org/abs/1710.07345) (2017)**
* **[quantum neuron: an elementary building block for machine learning on quantum computers](https://arxiv.org/abs/1711.11240) (2017)**
* **[a quantum algorithm to train neural networks using low-depth circuits](https://arxiv.org/abs/1712.05304) (2017)**
* **[a generative modeling approach for benchmarking and training shallow quantum circuits](https://arxiv.org/abs/1801.07686) (2018)**
* **[universal quantum perceptron as efficient unitary approximators](https://arxiv.org/abs/1801.00934) (2018)**
* **[quantum variational autoencoder](https://arxiv.org/abs/1802.05779) (2018)**
* **[classification with quantum neural networks on near term processors](https://arxiv.org/abs/1802.06002) (2018)**
* **[barren plateaus in quantum neural network training landscapes](https://arxiv.org/abs/1803.11173) (2018)**
* **[quantum generative adversarial learning](https://arxiv.org/abs/1804.09139) (2018)**
* **[quantum generative adversarial networks](https://arxiv.org/abs/1804.08641) (2018)**
* **[circuit-centric quantum classifiers](https://arxiv.org/abs/1804.00633) (2018)**
* **[universal discriminative quantum neural networks](https://arxiv.org/abs/1805.08654) (2018)**
* **[a universal training algorithm for quantum deep learning](https://arxiv.org/abs/1806.09729) (2018)**
* **[bayesian deep learning on a quantum computer](https://arxiv.org/abs/1806.11463) (2018)**
* **[quantum generative adversarial learning in a superconducting quantum circuit](https://arxiv.org/abs/1808.02893) (2018)**
* **[the expressive power of parameterized quantum circuits](https://arxiv.org/abs/1810.11922) (2018)**
* **[quantum convolutional neural networks](https://arxiv.org/abs/1810.03787) (2018)**
* **[an artificial neuron implemented on an actual quantum processor](https://arxiv.org/pdf/1811.02266.pdf) (2018)**
* **[graph cut segmentation methods revisited with a quantum algorithm](https://arxiv.org/abs/1812.03050) (2018)**
* **[efficient learning for deep quantum neural networks](https://arxiv.org/abs/1902.10445) (2019)**
* **[parameterized quantum circuits as machine learning models](https://arxiv.org/abs/1906.07682) (2019)**
* **[machine learning phase transitions with a quantum processor](https://arxiv.org/abs/1906.10155) (2019)**
<br>
#### tensor networks
<br>
* **[towards quantum machine learning with tensor networks](https://arxiv.org/abs/1803.11537) (2018)**
* **[hierarchical quantum classifiers](https://arxiv.org/abs/1804.03680v1) (2018)**
<br>
#### reinforcement learning
<br>
* **[quantum reinforcement learning](https://arxiv.org/abs/0810.3828) (2008)**
* **[reinforcement learning using quantum boltzmann machines](https://arxiv.org/abs/1612.05695) (2016)**
* **[generalized quantum reinforcement learning with quantum technologies](https://arxiv.org/abs/1709.07848) (2017)**
<br>
#### optimization
<br>
* **[quantum gradient descent and newtons method for constrained polynomial optimization](https://arxiv.org/abs/1612.01789) (2016)**
* **[quantum algorithms and lower bounds for convex optimization](https://arxiv.org/pdf/1809.01731.pdf) (2018)**
<br>
#### kernel methods and svm
<br>
* **[supervised learning with quantum enhanced feature spaces](https://arxiv.org/abs/1804.11326) (2018)**
* **[quantum sparse support vector machines](https://arxiv.org/abs/1902.01879) (2019)**
* **[sublinear quantum algorithms for training linear and kernel-based classifiers](https://arxiv.org/pdf/1904.02276.pdf) (2019)**
<br>
---
### continuous-variables quantum computing
<br>
#### variational circuits
* **[continuous-variable quantum neural networks](https://arxiv.org/abs/1806.06871) (2018)**
* **[machine learning method for state preparation and gate synthesis on photonic quantum computers](https://arxiv.org/abs/1807.10781) (2018)**
* **[near-deterministic production of universal quantum photonic gates enhanced by machine learning](https://arxiv.org/abs/1809.04680) (2018)**
<br>
#### kernel methods and svm
* **[quantum machine learning in feature hilbert spaces](https://arxiv.org/1803.07128) (2018)**