portapack-mayhem/firmware/application/apps/ui_looking_glass_app.cpp
2023-04-30 14:56:17 +02:00

694 lines
28 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2020 euquiq
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_looking_glass_app.hpp"
using namespace portapack;
namespace ui
{
void GlassView::focus()
{
button_marker.focus();
}
GlassView::~GlassView()
{
receiver_model.set_sampling_rate(3072000); // Just a hack to avoid hanging other apps
receiver_model.disable();
baseband::shutdown();
}
// Returns the next multiple of num that is a multiple of multiplier
int64_t GlassView::next_mult_of(int64_t num, int64_t multiplier) {
return ((num / multiplier) + 1) * multiplier;
}
void GlassView::adjust_range(int64_t* f_min, int64_t* f_max, int64_t width) {
int64_t span = *f_max - *f_min;
int64_t num_intervals = span / width;
if( span % width != 0 )
{
num_intervals++;
}
int64_t new_span = num_intervals * width;
int64_t delta_span = (new_span - span) / 2;
*f_min -= delta_span;
*f_max += delta_span;
}
void GlassView::on_lna_changed(int32_t v_db)
{
receiver_model.set_lna(v_db);
}
void GlassView::on_vga_changed(int32_t v_db)
{
receiver_model.set_vga(v_db);
}
void GlassView::reset_live_view( bool clear_screen )
{
max_freq_hold = 0 ;
max_freq_power = -1000 ;
if( clear_screen )
{
// only clear screen in peak mode
if( live_frequency_view == 2 )
{
display.fill_rectangle( { { 0 , 108 + 16 } , { 240 , 320 - (108 + 16) } } , { 0 , 0 , 0 } );
}
}
}
void GlassView::add_spectrum_pixel( uint8_t power )
{
static int64_t last_max_freq = 0 ;
spectrum_row[pixel_index] = spectrum_rgb3_lut[power] ; // row of colors
spectrum_data[pixel_index] = ( live_frequency_integrate * spectrum_data[pixel_index] + power ) / (live_frequency_integrate + 1); // smoothing
pixel_index ++ ;
if (pixel_index == 240) // got an entire waterfall line
{
if( live_frequency_view > 0 )
{
constexpr int rssi_sample_range = 256;
constexpr float rssi_voltage_min = 0.4;
constexpr float rssi_voltage_max = 2.2;
constexpr float adc_voltage_max = 3.3;
constexpr int raw_min = rssi_sample_range * rssi_voltage_min / adc_voltage_max;
constexpr int raw_max = rssi_sample_range * rssi_voltage_max / adc_voltage_max;
constexpr int raw_delta = raw_max - raw_min;
const range_t<int> y_max_range { 0 , 320 - ( 108 + 16 ) };
//drawing and keeping track of max freq
for( uint16_t xpos = 0 ; xpos < 240 ; xpos ++ )
{
// save max powerwull freq
if( spectrum_data[ xpos ] > max_freq_power )
{
max_freq_power = spectrum_data[ xpos ];
max_freq_hold = f_min + ( (f_max - f_min) * xpos) / 240 ;
}
int16_t point = y_max_range.clip( ( ( spectrum_data[ xpos ] - raw_min ) * ( 320 - ( 108 + 16 ) ) ) / raw_delta );
uint8_t color_gradient = (point * 255) / 212 ;
// clear if not in peak view
if( live_frequency_view != 2 )
{
display.fill_rectangle( { { xpos , 108 + 16 } , { 1 , 320 - point } } , { 0 , 0 , 0 } );
}
display.fill_rectangle( { { xpos , 320 - point } , { 1 , point } } , { color_gradient , 0 , uint8_t( 255 - color_gradient ) } );
}
if( last_max_freq != max_freq_hold )
{
last_max_freq = max_freq_hold ;
freq_stats.set( "MAX HOLD: "+to_string_short_freq( max_freq_hold ) );
}
PlotMarker( marker );
}
else
{
display.draw_pixels({{0, display.scroll(1)}, {240, 1}}, spectrum_row); // new line at top, one less var, speedier
}
pixel_index = 0; // Start New cascade line
}
}
// Apparently, the spectrum object returns an array of 256 bins
// Each having the radio signal power for it's corresponding frequency slot
void GlassView::on_channel_spectrum(const ChannelSpectrum &spectrum)
{
// default fast scan offset
uint8_t offset = 2 ;
baseband::spectrum_streaming_stop();
if( fast_scan || ( LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX ) )
{
// Convert bins of this spectrum slice into a representative max_power and when enough, into pixels
// Spectrum.db has 256 bins.
// All things said and done, we actually need 240 of those bins
for (uint8_t bin = 0; bin < 240; bin++)
{
// if the view is done in one pass, show it like in analog_audio_app
if( ( LOOKING_GLASS_SLICE_WIDTH < LOOKING_GLASS_SLICE_WIDTH_MAX ) )
{
// Center 16 bins are ignored (DC spike is blanked)
if (bin < 120)
{
if (spectrum.db[256 - 120 + bin] > max_power) // 134
max_power = spectrum.db[256 - 120 + bin];
}
else
{
if (spectrum.db[ bin - 120] > max_power) // 118
max_power = spectrum.db[bin - 120];
}
}
else // view is made in multiple pass, use original bin picking
{
// Center 12 bins are ignored (DC spike is blanked) Leftmost and rightmost 2 bins are ignored
if (bin < 120)
{
if (spectrum.db[134 + bin] > max_power) // 134
max_power = spectrum.db[134 + bin];
}
else
{
if (spectrum.db[bin - 118] > max_power) // 118
max_power = spectrum.db[bin - 118];
}
}
if( bin == 120 )
{
bins_Hz_size += 12 * each_bin_size; // add DC bin Hz count into the "pixel fulfilled bag of Hz"
}
else
{
bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz"
}
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
{
if (min_color_power < max_power)
add_spectrum_pixel(max_power); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
max_power = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
f_center = f_center_ini - offset * each_bin_size ; // Start a new sweep
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(10);
baseband::spectrum_streaming_start(); // Do the RX
return;
}
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
}
}
f_center += ( 256 - ( 2 * offset ) ) * each_bin_size ; // Move into the next bandwidth slice NOTE: spectrum.sampling_rate = LOOKING_GLASS_SLICE_WIDTH
// lost bins are taken in account so next slice first ignored bins overlap previous kept ones
}
else //slow scan
{
offset = 32 ;
uint8_t bin_length = 80 ;
for (uint8_t bin = offset ; bin < bin_length + offset ; bin++)
{
if (bin < 120)
{
if (spectrum.db[134 + bin] > max_power) // 134
max_power = spectrum.db[134 + bin];
}
else
{
if (spectrum.db[bin - 118] > max_power) // 118
max_power = spectrum.db[bin - 118];
}
bins_Hz_size += each_bin_size; // add this bin Hz count into the "pixel fulfilled bag of Hz"
if (bins_Hz_size >= marker_pixel_step) // new pixel fullfilled
{
if (min_color_power < max_power)
add_spectrum_pixel(max_power); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
max_power = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
bins_Hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
f_center = f_center_ini - offset * each_bin_size ; // Start a new sweep
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(10);
baseband::spectrum_streaming_start(); // Do the RX
return;
}
bins_Hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
}
}
f_center += bin_length * each_bin_size ;
}
radio::set_tuning_frequency(f_center); // tune rx for this new slice directly, faster than using persistent memory saving
chThdSleepMilliseconds(5);
baseband::spectrum_streaming_start(); // Do the RX
}
void GlassView::on_hide()
{
baseband::spectrum_streaming_stop();
display.scroll_disable();
}
void GlassView::on_show()
{
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates
baseband::spectrum_streaming_start();
}
void GlassView::on_range_changed()
{
reset_live_view( false );
f_min = field_frequency_min.value();
f_max = field_frequency_max.value();
search_span = f_max - f_min;
if( locked_range )
{
button_range.set_text(">"+to_string_dec_uint(search_span)+"<");
}
else
{
button_range.set_text(" "+to_string_dec_uint(search_span)+" ");
}
f_min = (f_min)*MHZ_DIV; // Transpose into full frequency realm
f_max = (f_max)*MHZ_DIV;
adjust_range( &f_min , &f_max , 240 );
marker_pixel_step = (f_max - f_min) / 240; // Each pixel value in Hz
marker = f_min + (f_max - f_min) / 2 ;
button_marker.set_text( to_string_short_freq( marker ) );
PlotMarker( marker ); // Refresh marker on screen
pixel_index = 0; // reset pixel counter
max_power = 0;
bins_Hz_size = 0; // reset amount of Hz filled up by pixels
if( (f_max - f_min) <= LOOKING_GLASS_SLICE_WIDTH_MAX )
{
LOOKING_GLASS_SLICE_WIDTH = (f_max - f_min) ;
receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH);
receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH/2);
}
else if( LOOKING_GLASS_SLICE_WIDTH != LOOKING_GLASS_SLICE_WIDTH_MAX )
{
LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX ;
receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH);
receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH);
}
if( next_mult_of( LOOKING_GLASS_SLICE_WIDTH , 256 ) > LOOKING_GLASS_SLICE_WIDTH_MAX )
LOOKING_GLASS_SLICE_WIDTH = LOOKING_GLASS_SLICE_WIDTH_MAX ;
else
LOOKING_GLASS_SLICE_WIDTH = next_mult_of( LOOKING_GLASS_SLICE_WIDTH , 256 );
receiver_model.set_squelch_level(0);
each_bin_size = LOOKING_GLASS_SLICE_WIDTH / 256 ;
f_center_ini = f_min + (LOOKING_GLASS_SLICE_WIDTH / 2) ; // Initial center frequency for sweep
f_center = f_center_ini ; // Reset sweep into first slice
baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value());
receiver_model.set_tuning_frequency(f_center_ini); // tune rx for this slice
}
void GlassView::PlotMarker(rf::Frequency pos)
{
pos -= f_min;
pos = pos / marker_pixel_step; // Real pixel
uint8_t shift_y = 0 ;
if( live_frequency_view > 0 ) // plot one line down when in live view
{
shift_y = 16 ;
}
portapack::display.fill_rectangle({0, 100 + shift_y, 240, 8}, Color::black()); // Clear old marker and whole marker rectangle btw
portapack::display.fill_rectangle({(int)pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top
portapack::display.fill_rectangle({(int)pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle
portapack::display.fill_rectangle({(int)pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom
}
GlassView::GlassView(
NavigationView &nav) : nav_(nav)
{
baseband::run_image(portapack::spi_flash::image_tag_wideband_spectrum);
add_children({&labels,
&field_frequency_min,
&field_frequency_max,
&field_lna,
&field_vga,
&button_range,
&steps_config,
&scan_type,
&view_config,
&level_integration,
&filter_config,
&field_rf_amp,
&range_presets,
&button_marker,
&field_trigger,
&button_jump,
&button_rst,
&freq_stats});
load_Presets(); // Load available presets from TXT files (or default)
field_frequency_min.on_change = [this](int32_t v)
{
reset_live_view( true );
int32_t min_size = steps ;
if( locked_range )
min_size = search_span ;
if( min_size < 2 )
min_size = 2 ;
if( v > 7200 - min_size )
{
v = 7200 - min_size ;
field_frequency_min.set_value( v );
}
if (v > (field_frequency_max.value() - min_size ) )
field_frequency_max.set_value( v + min_size );
if( locked_range )
field_frequency_max.set_value( v + min_size );
this->on_range_changed();
};
field_frequency_min.set_value(presets_db[0].min); // Defaults to first preset
field_frequency_min.set_step( steps );
field_frequency_min.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value()*1000000);
new_view->on_changed = [this, &field](rf::Frequency f) {
int32_t freq = f / 1000000 ;
int32_t min_size = steps ;
if( locked_range )
min_size = search_span ;
if( min_size < 2 )
min_size = 2 ;
if( freq > (7200 - min_size ) )
freq = 7200 - min_size ;
field_frequency_min.set_value( freq );
if( field_frequency_max.value() < ( freq + min_size ) )
field_frequency_max.set_value( freq + min_size );
this->on_range_changed();
};
};
field_frequency_max.on_change = [this](int32_t v)
{
reset_live_view( true );
int32_t min_size = steps ;
if( locked_range )
min_size = search_span ;
if( min_size < 2 )
min_size = 2 ;
if( v < min_size )
{
v = min_size ;
field_frequency_max.set_value( v );
}
if (v < (field_frequency_min.value() + min_size) )
field_frequency_min.set_value(v - min_size);
if( locked_range )
field_frequency_min.set_value( v - min_size );
this->on_range_changed();
};
field_frequency_max.set_value(presets_db[0].max); // Defaults to first preset
field_frequency_max.set_step( steps );
field_frequency_max.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value()*1000000);
new_view->on_changed = [this, &field](rf::Frequency f) {
int32_t min_size = steps ;
if( locked_range )
min_size = search_span ;
if( min_size < 2 )
min_size = 2 ;
int32_t freq = f / 1000000 ;
if( freq < min_size )
freq = min_size ;
field_frequency_max.set_value( freq );
if( field_frequency_min.value() > ( freq - min_size) )
field_frequency_min.set_value( freq - min_size );
this->on_range_changed();
};
};
field_lna.on_change = [this](int32_t v)
{
reset_live_view( true );
this->on_lna_changed(v);
};
field_lna.set_value(receiver_model.lna());
field_vga.on_change = [this](int32_t v_db)
{
reset_live_view( true );
this->on_vga_changed(v_db);
};
field_vga.set_value(receiver_model.vga());
steps_config.on_change = [this](size_t n, OptionsField::value_t v)
{
(void)n;
field_frequency_min.set_step( v );
field_frequency_max.set_step( v );
steps = v ;
};
steps_config.set_selected_index(0); //default of 1 Mhz steps
scan_type.on_change = [this](size_t n, OptionsField::value_t v)
{
(void)n;
fast_scan = v ;
};
scan_type.set_selected_index(0); // default legacy fast scan
view_config.on_change = [this](size_t n, OptionsField::value_t v)
{
(void)n;
// clear between changes
reset_live_view( true );
if( v == 0 )
{
live_frequency_view = 0 ;
level_integration.hidden( true );
freq_stats.hidden( true );
button_jump.hidden( true );
button_rst.hidden( true );
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates
}
else if( v == 1 )
{
display.fill_rectangle( { { 0 , 108 } , { 240 , 24 } } , { 0 , 0 , 0 } );
live_frequency_view = 1 ;
display.scroll_disable();
level_integration.hidden( false );
freq_stats.hidden( false );
button_jump.hidden( false );
button_rst.hidden( false );
}
else if( v == 2 )
{
display.fill_rectangle( { { 0 , 108 } , { 240 , 24 } } , { 0 , 0 , 0 } );
live_frequency_view = 2 ;
display.scroll_disable();
level_integration.hidden( false );
freq_stats.hidden( false );
button_jump.hidden( false );
button_rst.hidden( false );
}
set_dirty();
};
view_config.set_selected_index(0); //default spectrum
level_integration.on_change = [this](size_t n, OptionsField::value_t v)
{
(void)n;
reset_live_view( true );
live_frequency_integrate = v ;
};
level_integration.set_selected_index(3); //default integration of ( 3 * old value + new_value ) / 4
filter_config.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
reset_live_view( true );
min_color_power = v;
};
filter_config.set_selected_index(0);
range_presets.on_change = [this](size_t n, OptionsField::value_t v)
{
(void)n;
field_frequency_min.set_value(presets_db[v].min, false);
field_frequency_max.set_value(presets_db[v].max, false);
this->on_range_changed();
};
button_marker.on_change = [this]()
{
marker = marker + button_marker.get_encoder_delta() * marker_pixel_step ;
if( marker < f_min )
marker = f_min ;
if( marker > f_max )
marker = f_max ;
button_marker.set_text( to_string_short_freq( marker ) );
button_marker.set_encoder_delta( 0 );
PlotMarker( marker ); // Refresh marker on screen
};
button_marker.on_select = [this](ButtonWithEncoder &)
{
receiver_model.set_tuning_frequency(marker); // Center tune rx in marker freq.
receiver_model.set_frequency_step(MHZ_DIV); // Preset a 1 MHz frequency step into RX -> AUDIO
nav_.pop();
nav_.push<AnalogAudioView>(); // Jump into audio view
};
field_trigger.on_change = [this](int32_t v)
{
baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, v);
};
field_trigger.set_value(32); // Defaults to 32, as normal triggering resolution
button_range.on_select = [this](Button&) {
if( locked_range )
{
locked_range = false ;
button_range.set_style(&style_white);
button_range.set_text(" "+to_string_dec_uint(search_span)+" ");
}
else
{
locked_range = true ;
button_range.set_style(&style_red);
button_range.set_text(">"+to_string_dec_uint(search_span)+"<");
}
};
button_jump.on_select = [this](Button&) {
receiver_model.set_tuning_frequency(max_freq_hold); // Center tune rx in marker freq.
receiver_model.set_frequency_step(MHZ_DIV); // Preset a 1 MHz frequency step into RX -> AUDIO
nav_.pop();
nav_.push<AnalogAudioView>(); // Jump into audio view
};
button_rst.on_select = [this](Button&) {
reset_live_view( true );
};
display.scroll_set_area(109, 319);
baseband::set_spectrum(LOOKING_GLASS_SLICE_WIDTH, field_trigger.value()); // trigger:
// Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute ,
// it keeps adding the output of the fft to the buffer until "trigger" number of calls are made,
// at which time it pushes the buffer up with channel_spectrum.feed
on_range_changed();
receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis);
receiver_model.set_sampling_rate(LOOKING_GLASS_SLICE_WIDTH); // 20mhz
receiver_model.set_baseband_bandwidth(LOOKING_GLASS_SLICE_WIDTH); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz
receiver_model.set_squelch_level(0);
receiver_model.enable();
}
void GlassView::load_Presets()
{
File presets_file; // LOAD /WHIPCALC/ANTENNAS.TXT from microSD
auto result = presets_file.open("LOOKINGGLASS/PRESETS.TXT");
presets_db.clear(); // Start with fresh db
if (result.is_valid())
{
presets_Default(); // There is no txt, store a default range
}
else
{
std::string line; // There is a txt file
char one_char[1]; // Read it char by char
for (size_t pointer = 0; pointer < presets_file.size(); pointer++)
{
presets_file.seek(pointer);
presets_file.read(one_char, 1);
if ((int)one_char[0] > 31)
{ // ascii space upwards
line += one_char[0]; // Add it to the textline
}
else if (one_char[0] == '\n')
{ // New Line
txtline_process(line); // make sense of this textline
line.clear(); // Ready for next textline
}
}
if (line.length() > 0)
txtline_process(line); // Last line had no newline at end ?
if (!presets_db.size())
presets_Default(); // no antenna on txt, use default
}
populate_Presets();
}
void GlassView::txtline_process(std::string &line)
{
if (line.find("#") != std::string::npos)
return; // Line is just a comment
size_t comma = line.find(","); // Get first comma position
if (comma == std::string::npos)
return; // No comma at all
size_t previous = 0;
preset_entry new_preset;
new_preset.min = std::stoi(line.substr(0, comma));
if (!new_preset.min)
return; // No frequency!
previous = comma + 1;
comma = line.find(",", previous); // Search for next delimiter
if (comma == std::string::npos)
return; // No comma at all
new_preset.max = std::stoi(line.substr(previous, comma - previous));
if (!new_preset.max)
return; // No frequency!
new_preset.label = line.substr(comma + 1);
if (new_preset.label.size() == 0)
return; // No label ?
presets_db.push_back(new_preset); // Add this preset.
}
void GlassView::populate_Presets()
{
using option_t = std::pair<std::string, int32_t>;
using options_t = std::vector<option_t>;
options_t entries;
for (preset_entry preset : presets_db)
{ // go thru all available presets
entries.emplace_back(preset.label, entries.size());
}
range_presets.set_options(entries);
}
void GlassView::presets_Default()
{
presets_db.clear();
presets_db.push_back({2320, 2560, "DEFAULT WIFI 2.4GHz"});
}
}