portapack-mayhem/firmware/application/ui/ui_spectrum.cpp
Kyle Reed bd4948602a
Fix RSSI for apps using proc_capture (#1420)
* Fix RSSI for apps using proc_capture
* Update comment
2023-08-30 17:13:14 +02:00

419 lines
14 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_spectrum.hpp"
#include "spectrum_color_lut.hpp"
#include "portapack.hpp"
using namespace portapack;
#include "baseband_api.hpp"
#include "string_format.hpp"
#include <cmath>
#include <array>
namespace ui {
namespace spectrum {
/* AudioSpectrumView ******************************************************/
AudioSpectrumView::AudioSpectrumView(
const Rect parent_rect)
: View{parent_rect} {
set_focusable(true);
add_children({&labels,
&field_frequency,
&waveform});
field_frequency.on_change = [this](int32_t) {
set_dirty();
};
field_frequency.set_value(0);
}
void AudioSpectrumView::paint(Painter& painter) {
const auto r = screen_rect();
painter.fill_rectangle(r, Color::black());
// if( !spectrum_sampling_rate ) return;
// Cursor
const Rect r_cursor{
field_frequency.value() / (48000 / 240), r.bottom() - 32 - cursor_band_height,
1, cursor_band_height};
painter.fill_rectangle(
r_cursor,
Color::red());
}
void AudioSpectrumView::on_audio_spectrum(const AudioSpectrum* spectrum) {
for (size_t i = 0; i < spectrum->db.size(); i++)
audio_spectrum[i] = ((int16_t)spectrum->db[i] - 127) * 256;
waveform.set_dirty();
}
/* FrequencyScale ********************************************************/
void FrequencyScale::on_show() {
clear();
}
void FrequencyScale::set_spectrum_sampling_rate(const int new_sampling_rate) {
if ((spectrum_sampling_rate != new_sampling_rate)) {
spectrum_sampling_rate = new_sampling_rate;
set_dirty();
}
}
void FrequencyScale::set_channel_filter(
const int low_frequency,
const int high_frequency,
const int transition) {
if ((channel_filter_low_frequency != low_frequency) ||
(channel_filter_high_frequency != high_frequency) ||
(channel_filter_transition != transition)) {
channel_filter_low_frequency = low_frequency;
channel_filter_high_frequency = high_frequency;
channel_filter_transition = transition;
set_dirty();
}
}
void FrequencyScale::paint(Painter& painter) {
const auto r = screen_rect();
clear_background(painter, r);
if (!spectrum_sampling_rate) {
// Can't draw without non-zero scale.
return;
}
draw_filter_ranges(painter, r);
draw_frequency_ticks(painter, r);
if (_blink) {
const Rect r_cursor{
118 + cursor_position, r.bottom() - filter_band_height,
5, filter_band_height};
painter.fill_rectangle(
r_cursor,
Color::red());
}
}
void FrequencyScale::clear() {
spectrum_sampling_rate = 0;
set_dirty();
}
void FrequencyScale::clear_background(Painter& painter, const Rect r) {
painter.fill_rectangle(r, Color::black());
}
void FrequencyScale::draw_frequency_ticks(Painter& painter, const Rect r) {
const auto x_center = r.width() / 2;
const Rect tick{r.left() + x_center, r.top(), 1, r.height()};
painter.fill_rectangle(tick, Color::white());
constexpr int tick_count_max = 4;
float rough_tick_interval = float(spectrum_sampling_rate) / tick_count_max;
int magnitude = 1;
int magnitude_n = 0;
while (rough_tick_interval >= 10.0f) {
rough_tick_interval /= 10;
magnitude *= 10;
magnitude_n += 1;
}
const int tick_interval = std::ceil(rough_tick_interval);
auto tick_offset = tick_interval;
while ((tick_offset * magnitude) < spectrum_sampling_rate / 2) {
const Dim pixel_offset = tick_offset * magnitude * spectrum_bins / spectrum_sampling_rate;
const std::string zero_pad =
((magnitude_n % 3) == 0) ? "" : ((magnitude_n % 3) == 1) ? "0"
: "00";
const std::string unit =
(magnitude_n >= 6) ? "M" : (magnitude_n >= 3) ? "k"
: "";
const std::string label = to_string_dec_uint(tick_offset) + zero_pad + unit;
const auto label_width = style().font.size_of(label).width();
const Coord offset_low = r.left() + x_center - pixel_offset;
const Rect tick_low{offset_low, r.top(), 1, r.height()};
painter.fill_rectangle(tick_low, Color::white());
painter.draw_string({offset_low + 2, r.top()}, style(), label);
const Coord offset_high = r.left() + x_center + pixel_offset;
const Rect tick_high{offset_high, r.top(), 1, r.height()};
painter.fill_rectangle(tick_high, Color::white());
painter.draw_string({offset_high - 2 - label_width, r.top()}, style(), label);
tick_offset += tick_interval;
}
}
void FrequencyScale::draw_filter_ranges(Painter& painter, const Rect r) {
if (channel_filter_low_frequency != channel_filter_high_frequency) {
const auto x_center = r.width() / 2;
const auto x_low = x_center + channel_filter_low_frequency * spectrum_bins / spectrum_sampling_rate;
const auto x_high = x_center + channel_filter_high_frequency * spectrum_bins / spectrum_sampling_rate;
if (channel_filter_transition) {
const auto trans = channel_filter_transition * spectrum_bins / spectrum_sampling_rate;
const Rect r_all{
r.left() + x_low - trans, r.bottom() - filter_band_height,
x_high - x_low + trans * 2, filter_band_height};
painter.fill_rectangle(
r_all,
Color::yellow());
}
const Rect r_pass{
r.left() + x_low, r.bottom() - filter_band_height,
x_high - x_low, filter_band_height};
painter.fill_rectangle(
r_pass,
Color::green());
}
}
void FrequencyScale::on_focus() {
_blink = true;
on_tick_second();
signal_token_tick_second = rtc_time::signal_tick_second += [this]() {
this->on_tick_second();
};
}
void FrequencyScale::on_blur() {
rtc_time::signal_tick_second -= signal_token_tick_second;
_blink = false;
set_dirty();
}
bool FrequencyScale::on_encoder(const EncoderEvent delta) {
cursor_position += delta;
cursor_position = std::min<int32_t>(cursor_position, 119);
cursor_position = std::max<int32_t>(cursor_position, -120);
set_dirty();
return true;
}
bool FrequencyScale::on_key(const KeyEvent key) {
if (key == KeyEvent::Select) {
if (on_select) {
on_select((cursor_position * spectrum_sampling_rate) / 240);
cursor_position = 0;
return true;
}
}
return false;
}
void FrequencyScale::on_tick_second() {
set_dirty();
_blink = !_blink;
}
/* WaterfallWidget *********************************************************/
// TODO: buffer and use "paint" instead of immediate drawing would help with
// preventing flicker from drawing. Would use more RAM however.
void WaterfallWidget::on_show() {
clear();
const auto screen_r = screen_rect();
display.scroll_set_area(screen_r.top(), screen_r.bottom());
}
void WaterfallWidget::on_hide() {
/* TODO: Clear region to eliminate brief flash of content at un-shifted
* position?
*/
display.scroll_disable();
}
void WaterfallWidget::on_channel_spectrum(
const ChannelSpectrum& spectrum) {
/* TODO: static_assert that message.spectrum.db.size() >= pixel_row.size() */
std::array<Color, 240> pixel_row;
for (size_t i = 0; i < 120; i++) {
const auto pixel_color = spectrum_rgb3_lut[spectrum.db[256 - 120 + i]];
pixel_row[i] = pixel_color;
}
for (size_t i = 120; i < 240; i++) {
const auto pixel_color = spectrum_rgb3_lut[spectrum.db[i - 120]];
pixel_row[i] = pixel_color;
}
const auto draw_y = display.scroll(1);
display.draw_pixels(
{{0, draw_y}, {pixel_row.size(), 1}},
pixel_row);
}
void WaterfallWidget::clear() {
display.fill_rectangle(
screen_rect(),
Color::black());
}
/* WaterfallView *******************************************************/
WaterfallView::WaterfallView(const bool cursor) {
add_children({&waterfall_widget,
&frequency_scale});
frequency_scale.set_focusable(cursor);
// Making the event climb up all the way up to here kinda sucks
frequency_scale.on_select = [this](int32_t offset) {
if (on_select) on_select(offset);
};
}
void WaterfallView::on_show() {
start();
}
void WaterfallView::on_hide() {
stop();
}
void WaterfallView::start() {
if (!running_) {
baseband::spectrum_streaming_start();
running_ = true;
}
}
void WaterfallView::stop() {
if (running_) {
baseband::spectrum_streaming_stop();
running_ = false;
}
}
void WaterfallView::show_audio_spectrum_view(const bool show) {
if ((audio_spectrum_view && show) || (!audio_spectrum_view && !show)) return;
if (show) {
audio_spectrum_view = std::make_unique<AudioSpectrumView>(audio_spectrum_view_rect);
add_child(audio_spectrum_view.get());
update_widgets_rect();
} else {
audio_spectrum_update = false;
remove_child(audio_spectrum_view.get());
audio_spectrum_view.reset();
update_widgets_rect();
}
}
void WaterfallView::update_widgets_rect() {
if (audio_spectrum_view) {
frequency_scale.set_parent_rect({0, audio_spectrum_height, screen_rect().width(), scale_height});
waterfall_widget.set_parent_rect(waterfall_reduced_rect);
} else {
frequency_scale.set_parent_rect({0, 0, screen_rect().width(), scale_height});
waterfall_widget.set_parent_rect(waterfall_normal_rect);
}
waterfall_widget.on_show();
}
void WaterfallView::set_parent_rect(const Rect new_parent_rect) {
View::set_parent_rect(new_parent_rect);
waterfall_normal_rect = {0, scale_height, new_parent_rect.width(), new_parent_rect.height() - scale_height};
waterfall_reduced_rect = {0, audio_spectrum_height + scale_height, new_parent_rect.width(), new_parent_rect.height() - scale_height - audio_spectrum_height};
update_widgets_rect();
}
void WaterfallView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
waterfall_widget.on_channel_spectrum(spectrum);
sampling_rate = spectrum.sampling_rate;
frequency_scale.set_spectrum_sampling_rate(sampling_rate);
frequency_scale.set_channel_filter(
spectrum.channel_filter_low_frequency,
spectrum.channel_filter_high_frequency,
spectrum.channel_filter_transition);
}
void WaterfallView::on_audio_spectrum() {
audio_spectrum_view->on_audio_spectrum(audio_spectrum_data);
}
} /* namespace spectrum */
uint32_t filter_bandwidth_for_sampling_rate(int32_t sampling_rate) {
switch (sampling_rate) { // Use the var fs (sampling_rate) to set up BPF aprox < fs_max / 2 by Nyquist theorem.
case 0 ... 3'500'000: // BW Captured range BW (<=250K) : fs = 8x250k = 2000k, 16x150k = 2400k, 16x100k=1600k,
// 32x75k = 2400k, 32x50k=1600, 32x32k=1024, 64x25k = 1600k, 64x16k = 1024k, 64x12k5 = 800k.
return 1'750'000; // Minimum BPF MAX2837 for all those lower BW options.
case 4'000'000 ... 7'000'000: // OVS x8, BW capture range (500k...750kHz max) fs_max = 8 x 750k = 6Mhz
// BW 500k...750kHz, ex. 500kHz (fs = 8 x BW = 4Mhz), BW 600kHz (fs = 4,8Mhz), BW 750 kHz (fs = 6Mhz).
return 2'500'000; // In some IC, MAX2837 appears as 2250000, but both work similarly.
case 7'000'001 ... 10'000'000: // OVS x8 and x4, BW capture 1Mhz fs = 8 x 1Mhz = 8Mhz. (1Mhz showed slightly higher noise background).
return 3'500'000; // some low SD cards, if not showing avg. writing speed >4MB/sec, they will produce sammples drop at REC with 1MB and C16 format.
case 12'000'000 ... 14'000'000: // OVS x4, BW capture 3Mhz, fs = 4 x 3Mhz = 12Mhz
// Good BPF, good matching, we have some periodical M4 % samples drop.
return 5'000'000;
case 16'000'000: // OVS x4, BW capture 4Mhz, fs = 4 x 4Mhz = 16Mhz
// Good BPF, good matching, we have some periodical M4 % samples drop.
return 5'500'000;
case 18'000'000: // OVS x4, BW capture 4,5Mhz, fs = 4 x 4,5Mhz = 18Mhz
// Good BPF, good matching, we have some periodical M4 % samples drop.
return 6'000'000;
case 20'000'000: // OVS x4, BW capture 5Mhz, fs = 4 x 5Mhz = 20Mhz
// Good BPF, good matching, we have some periodical M4 % samples drop.
return 7'000'000;
default: // BW capture 5,5Mhz, fs = 4 x 5,5Mhz = 22Mhz max ADC sampling and others.
// We tested also 9Mhz FPB slightly too much noise floor, better at 8Mhz.
return 8'000'000;
}
}
} /* namespace ui */