/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ui_spectrum.hpp" #include "spectrum_color_lut.hpp" #include "portapack.hpp" using namespace portapack; #include "baseband_api.hpp" #include "string_format.hpp" #include #include namespace ui { namespace spectrum { /* AudioSpectrumView ******************************************************/ AudioSpectrumView::AudioSpectrumView( const Rect parent_rect) : View{parent_rect} { set_focusable(true); add_children({&labels, &field_frequency, &waveform}); field_frequency.on_change = [this](int32_t) { set_dirty(); }; field_frequency.set_value(0); } void AudioSpectrumView::paint(Painter& painter) { const auto r = screen_rect(); painter.fill_rectangle(r, Color::black()); // if( !spectrum_sampling_rate ) return; // Cursor const Rect r_cursor{ field_frequency.value() / (48000 / 240), r.bottom() - 32 - cursor_band_height, 1, cursor_band_height}; painter.fill_rectangle( r_cursor, Color::red()); } void AudioSpectrumView::on_audio_spectrum(const AudioSpectrum* spectrum) { for (size_t i = 0; i < spectrum->db.size(); i++) audio_spectrum[i] = ((int16_t)spectrum->db[i] - 127) * 256; waveform.set_dirty(); } /* FrequencyScale ********************************************************/ void FrequencyScale::on_show() { clear(); } void FrequencyScale::set_spectrum_sampling_rate(const int new_sampling_rate) { if ((spectrum_sampling_rate != new_sampling_rate)) { spectrum_sampling_rate = new_sampling_rate; set_dirty(); } } void FrequencyScale::set_channel_filter( const int low_frequency, const int high_frequency, const int transition) { if ((channel_filter_low_frequency != low_frequency) || (channel_filter_high_frequency != high_frequency) || (channel_filter_transition != transition)) { channel_filter_low_frequency = low_frequency; channel_filter_high_frequency = high_frequency; channel_filter_transition = transition; set_dirty(); } } void FrequencyScale::paint(Painter& painter) { const auto r = screen_rect(); clear_background(painter, r); if (!spectrum_sampling_rate) { // Can't draw without non-zero scale. return; } draw_filter_ranges(painter, r); draw_frequency_ticks(painter, r); if (_blink) { const Rect r_cursor{ 118 + cursor_position, r.bottom() - filter_band_height, 5, filter_band_height}; painter.fill_rectangle( r_cursor, Color::red()); } } void FrequencyScale::clear() { spectrum_sampling_rate = 0; set_dirty(); } void FrequencyScale::clear_background(Painter& painter, const Rect r) { painter.fill_rectangle(r, Color::black()); } void FrequencyScale::draw_frequency_ticks(Painter& painter, const Rect r) { const auto x_center = r.width() / 2; const Rect tick{r.left() + x_center, r.top(), 1, r.height()}; painter.fill_rectangle(tick, Color::white()); constexpr int tick_count_max = 4; float rough_tick_interval = float(spectrum_sampling_rate) / tick_count_max; int magnitude = 1; int magnitude_n = 0; while (rough_tick_interval >= 10.0f) { rough_tick_interval /= 10; magnitude *= 10; magnitude_n += 1; } const int tick_interval = std::ceil(rough_tick_interval); auto tick_offset = tick_interval; while ((tick_offset * magnitude) < spectrum_sampling_rate / 2) { const Dim pixel_offset = tick_offset * magnitude * spectrum_bins / spectrum_sampling_rate; const std::string zero_pad = ((magnitude_n % 3) == 0) ? "" : ((magnitude_n % 3) == 1) ? "0" : "00"; const std::string unit = (magnitude_n >= 6) ? "M" : (magnitude_n >= 3) ? "k" : ""; const std::string label = to_string_dec_uint(tick_offset) + zero_pad + unit; const auto label_width = style().font.size_of(label).width(); const Coord offset_low = r.left() + x_center - pixel_offset; const Rect tick_low{offset_low, r.top(), 1, r.height()}; painter.fill_rectangle(tick_low, Color::white()); painter.draw_string({offset_low + 2, r.top()}, style(), label); const Coord offset_high = r.left() + x_center + pixel_offset; const Rect tick_high{offset_high, r.top(), 1, r.height()}; painter.fill_rectangle(tick_high, Color::white()); painter.draw_string({offset_high - 2 - label_width, r.top()}, style(), label); tick_offset += tick_interval; } } void FrequencyScale::draw_filter_ranges(Painter& painter, const Rect r) { if (channel_filter_low_frequency != channel_filter_high_frequency) { const auto x_center = r.width() / 2; const auto x_low = x_center + channel_filter_low_frequency * spectrum_bins / spectrum_sampling_rate; const auto x_high = x_center + channel_filter_high_frequency * spectrum_bins / spectrum_sampling_rate; if (channel_filter_transition) { const auto trans = channel_filter_transition * spectrum_bins / spectrum_sampling_rate; const Rect r_all{ r.left() + x_low - trans, r.bottom() - filter_band_height, x_high - x_low + trans * 2, filter_band_height}; painter.fill_rectangle( r_all, Color::yellow()); } const Rect r_pass{ r.left() + x_low, r.bottom() - filter_band_height, x_high - x_low, filter_band_height}; painter.fill_rectangle( r_pass, Color::green()); } } void FrequencyScale::on_focus() { _blink = true; on_tick_second(); signal_token_tick_second = rtc_time::signal_tick_second += [this]() { this->on_tick_second(); }; } void FrequencyScale::on_blur() { rtc_time::signal_tick_second -= signal_token_tick_second; _blink = false; set_dirty(); } bool FrequencyScale::on_encoder(const EncoderEvent delta) { cursor_position += delta; cursor_position = std::min(cursor_position, 119); cursor_position = std::max(cursor_position, -120); set_dirty(); return true; } bool FrequencyScale::on_key(const KeyEvent key) { if (key == KeyEvent::Select) { if (on_select) { on_select((cursor_position * spectrum_sampling_rate) / 240); cursor_position = 0; return true; } } return false; } void FrequencyScale::on_tick_second() { set_dirty(); _blink = !_blink; } /* WaterfallWidget *********************************************************/ // TODO: buffer and use "paint" instead of immediate drawing would help with // preventing flicker from drawing. Would use more RAM however. void WaterfallWidget::on_show() { clear(); const auto screen_r = screen_rect(); display.scroll_set_area(screen_r.top(), screen_r.bottom()); } void WaterfallWidget::on_hide() { /* TODO: Clear region to eliminate brief flash of content at un-shifted * position? */ display.scroll_disable(); } void WaterfallWidget::on_channel_spectrum( const ChannelSpectrum& spectrum) { /* TODO: static_assert that message.spectrum.db.size() >= pixel_row.size() */ std::array pixel_row; for (size_t i = 0; i < 120; i++) { const auto pixel_color = spectrum_rgb3_lut[spectrum.db[256 - 120 + i]]; pixel_row[i] = pixel_color; } for (size_t i = 120; i < 240; i++) { const auto pixel_color = spectrum_rgb3_lut[spectrum.db[i - 120]]; pixel_row[i] = pixel_color; } const auto draw_y = display.scroll(1); display.draw_pixels( {{0, draw_y}, {pixel_row.size(), 1}}, pixel_row); } void WaterfallWidget::clear() { display.fill_rectangle( screen_rect(), Color::black()); } /* WaterfallView *******************************************************/ WaterfallView::WaterfallView(const bool cursor) { add_children({&waterfall_widget, &frequency_scale}); frequency_scale.set_focusable(cursor); // Making the event climb up all the way up to here kinda sucks frequency_scale.on_select = [this](int32_t offset) { if (on_select) on_select(offset); }; } void WaterfallView::on_show() { start(); } void WaterfallView::on_hide() { stop(); } void WaterfallView::start() { if (!running_) { baseband::spectrum_streaming_start(); running_ = true; } } void WaterfallView::stop() { if (running_) { baseband::spectrum_streaming_stop(); running_ = false; } } void WaterfallView::show_audio_spectrum_view(const bool show) { if ((audio_spectrum_view && show) || (!audio_spectrum_view && !show)) return; if (show) { audio_spectrum_view = std::make_unique(audio_spectrum_view_rect); add_child(audio_spectrum_view.get()); update_widgets_rect(); } else { audio_spectrum_update = false; remove_child(audio_spectrum_view.get()); audio_spectrum_view.reset(); update_widgets_rect(); } } void WaterfallView::update_widgets_rect() { if (audio_spectrum_view) { frequency_scale.set_parent_rect({0, audio_spectrum_height, screen_rect().width(), scale_height}); waterfall_widget.set_parent_rect(waterfall_reduced_rect); } else { frequency_scale.set_parent_rect({0, 0, screen_rect().width(), scale_height}); waterfall_widget.set_parent_rect(waterfall_normal_rect); } waterfall_widget.on_show(); } void WaterfallView::set_parent_rect(const Rect new_parent_rect) { View::set_parent_rect(new_parent_rect); waterfall_normal_rect = {0, scale_height, new_parent_rect.width(), new_parent_rect.height() - scale_height}; waterfall_reduced_rect = {0, audio_spectrum_height + scale_height, new_parent_rect.width(), new_parent_rect.height() - scale_height - audio_spectrum_height}; update_widgets_rect(); } void WaterfallView::on_channel_spectrum(const ChannelSpectrum& spectrum) { waterfall_widget.on_channel_spectrum(spectrum); sampling_rate = spectrum.sampling_rate; frequency_scale.set_spectrum_sampling_rate(sampling_rate); frequency_scale.set_channel_filter( spectrum.channel_filter_low_frequency, spectrum.channel_filter_high_frequency, spectrum.channel_filter_transition); } void WaterfallView::on_audio_spectrum() { audio_spectrum_view->on_audio_spectrum(audio_spectrum_data); } } /* namespace spectrum */ uint32_t filter_bandwidth_for_sampling_rate(int32_t sampling_rate) { switch (sampling_rate) { // Use the var fs (sampling_rate) to set up BPF aprox < fs_max / 2 by Nyquist theorem. case 0 ... 3'500'000: // BW Captured range BW (<=250K) : fs = 8x250k = 2000k, 16x150k = 2400k, 16x100k=1600k, // 32x75k = 2400k, 32x50k=1600, 32x32k=1024, 64x25k = 1600k, 64x16k = 1024k, 64x12k5 = 800k. return 1'750'000; // Minimum BPF MAX2837 for all those lower BW options. case 4'000'000 ... 7'000'000: // OVS x8, BW capture range (500k...750kHz max) fs_max = 8 x 750k = 6Mhz // BW 500k...750kHz, ex. 500kHz (fs = 8 x BW = 4Mhz), BW 600kHz (fs = 4,8Mhz), BW 750 kHz (fs = 6Mhz). return 2'500'000; // In some IC, MAX2837 appears as 2250000, but both work similarly. case 7'000'001 ... 10'000'000: // OVS x8 and x4, BW capture 1Mhz fs = 8 x 1Mhz = 8Mhz. (1Mhz showed slightly higher noise background). return 3'500'000; // some low SD cards, if not showing avg. writing speed >4MB/sec, they will produce sammples drop at REC with 1MB and C16 format. case 12'000'000 ... 14'000'000: // OVS x4, BW capture 3Mhz, fs = 4 x 3Mhz = 12Mhz // Good BPF, good matching, we have some periodical M4 % samples drop. return 5'000'000; case 16'000'000: // OVS x4, BW capture 4Mhz, fs = 4 x 4Mhz = 16Mhz // Good BPF, good matching, we have some periodical M4 % samples drop. return 5'500'000; case 18'000'000: // OVS x4, BW capture 4,5Mhz, fs = 4 x 4,5Mhz = 18Mhz // Good BPF, good matching, we have some periodical M4 % samples drop. return 6'000'000; case 20'000'000: // OVS x4, BW capture 5Mhz, fs = 4 x 5Mhz = 20Mhz // Good BPF, good matching, we have some periodical M4 % samples drop. return 7'000'000; default: // BW capture 5,5Mhz, fs = 4 x 5,5Mhz = 22Mhz max ADC sampling and others. // We tested also 9Mhz FPB slightly too much noise floor, better at 8Mhz. return 8'000'000; } } } /* namespace ui */