* Update spectrum_collector.cpp
lower case correction
* Update spectrum_collector.cpp
Description changed , better explanation.
* Revert "Update spectrum_collector.cpp"
This reverts commit 4a6fc35384.
* Revert "Update spectrum_collector.cpp"
This reverts commit 35cece1cb0.
* Revert "Solving Compile error on gcc10 . Keeping same safety protection about the size of the array ,but with slightly different sintax."
This reverts commit f4db4e2b53.
* Recovered CTCSS-Roger_beep-MIC-GAIN from 1.5.1
* Temporary removing ALC-( for AK4951 platorm)
checking if the ICAO address of the frame and the current item
in the details view match. Slight refactor by placing the decimal
to string conversion function into the string_format module.
Added fix in the scope of issue #365
FrequencyStepView field in TransmitterView class
FrequencyStepView field in TransmitterView class
Update ui_transmitter.hpp
Update credits
Fixed left padding of the decimal part of the numbers.
The underlying function used for calculating Latitude and Longitude -also used in other places inside the radiosonde app- was returning a positive value always.
But it needs to cope with negative values also (i.e. Lat and Lon)
Fixed by just changing the returning value into int32_t (even if the calculation is done in uint32_t, the actual sign is passed thru when returning the calculated value -those are the same 4 bytes, interpreted either as (before) unsigned or (now) signed)
- Now we have variable CLKOUT.
- CLKOUT can be set between 10kHz and 60MHz.
(The output signal will become mostly sine shape when reaching 50MHz.)
- Click on freq setting field to change tuning step.
Also added the fields "DateTime" which just shows the raw timestamp that portapack assigned the last packet received, in the format: YYYYMMDDHHMMSS ... And "Frame" which shows the packet # (or frame) for correlating with other software / verify that there are new packets being received.
Also moved a string function for returning rounded-up decimals, originally inside the whipcalc tool app, into the string_format functions library, because I used that function on TEMP and HUMIDITY values inisde the radiosonde app.
Finally, the whole UI has its widgets moved a bit, giving space for these new parameters.
Added CRC calculation for Vaisala radiosondes.
Added a Checkbox on APP for turning ON / OFF CRC. When CRC on, malformed packets are ignored.
Connected existing CRC function for METEOMAN sondes, using the same "CRC" checkbox logic.
Added the Vaisala RS41 data packet decoding.
Changed the default freq from 402.0 to 402.7 Mhz, since it is more popular freq.
Lowered the frequency stepping, so it is easier to fine-tune the exact freq center, if needed.
Sonde's Serial ID is passed into the VIEW MAP, so now the sonde is labelled on the map.
You can enable RX and adjust VOLUME and SQUELCH into your liking.
Sadly enough, you will NOT be able to use VOICE ACTIVATION when RX is enabled (to ensure there will be NO audio feedback defeating the VA sensing)
A "bug" that won over me, but perhaps and hopefully other coder can easily fix: The Vumeter will momentarily "dissappear" when enabling RX. But it will reappear as soon as you start TX. Or when you turn off RX.
I enabled the PEAK LEVEL MARK on the Vumeter, so you can easily see in which level your input voice / signal is peaking and regulate the MIC gain accordingly in an easier / more robust way.
Side enhancement: Took off the dark green, yellow and red coloring from the vumeter when no signal is present, and replaced it with dark_grey. I know that some coloring is "eye-candy" but the vu-meter is more readable with this new contrast.
It reads the antennas definition from a txt file:
WHIPCALC/ANTENNAS.TXT
Inside the textfile you place each antenna you own with the following sintaxis:
<antenna label> <elements length in mm, separated by a space>
For example:
ANT500 185 315 450 586 724 862
Input the required frequency, adjust the wave type (full / half / quarter, etc.) and the calculator will return the antenna length (metric and imperial) while also calculating how much you need to expand the fitting antennas you got defined on the txt.
It may return up to 8 matching antennas, which is more than enough (normally you will have 2, perhaps 3 telescopic antennas around for your portapack)
If by any chance your antennas txt got more than 8 antennas, and more than 8 matches the length of the freq / wave you want, it will only show the first 8 matching antennas and will warn you at the bottom that there are even more results (hidden).
All calculations now are rounded into the best integer, considering first decimal, so precision is double than the original antenna calculator app.