portapack-mayhem/firmware/application/hw/max2837.cpp

416 lines
14 KiB
C++
Raw Normal View History

2015-07-08 11:39:24 -04:00
/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "max2837.hpp"
#include "hackrf_hal.hpp"
#include "hackrf_gpio.hpp"
using namespace hackrf::one;
#include "ch.h"
#include "hal.h"
#include <algorithm>
namespace max2837 {
using namespace max283x;
2015-07-08 11:39:24 -04:00
namespace lna {
using namespace max283x::lna;
constexpr std::array<uint8_t, 8> lookup_8db_steps{
0b111, 0b011, 0b110, 0b010,
0b100, 0b000, 0b000, 0b000};
2015-07-08 11:39:24 -04:00
static uint_fast8_t gain_ordinal(const int8_t db) {
const auto db_sat = gain_db_range.clip(db);
return lna::lookup_8db_steps[(db_sat >> 3) & 7];
2015-07-08 11:39:24 -04:00
}
} /* namespace lna */
namespace vga {
using namespace max283x::vga;
2015-07-08 11:39:24 -04:00
static uint_fast8_t gain_ordinal(const int8_t db) {
const auto db_sat = gain_db_range.clip(db);
return ((db_sat >> 1) & 0b11111) ^ 0b11111;
2015-07-08 11:39:24 -04:00
}
} /* namespace vga */
namespace tx {
using namespace max283x::tx;
static uint_fast8_t gain_ordinal(const int8_t db) {
const auto db_sat = gain_db_range.clip(db);
uint8_t value = db_sat & 0x0f;
value = (db_sat >= 16) ? (value | 0x20) : value;
value = (db_sat >= 32) ? (value | 0x10) : value;
return (value & 0b111111) ^ 0b111111;
}
} /* namespace tx */
2015-07-08 11:39:24 -04:00
namespace filter {
using namespace max283x::filter;
2015-07-08 11:39:24 -04:00
static uint_fast8_t bandwidth_ordinal(const uint32_t bandwidth) {
/* Determine filter setting that will provide bandwidth greater than or
* equal to requested bandwidth.
*/
return std::lower_bound(bandwidths.cbegin(), bandwidths.cend(), bandwidth) - bandwidths.cbegin();
2015-07-08 11:39:24 -04:00
}
} /* namespace filter */
/* Empirical testing indicates about 25us is necessary to get a valid
* temperature sense conversion from the ADC.
*/
constexpr float seconds_for_temperature_sense_adc_conversion = 30.0e-6;
constexpr halrtcnt_t ticks_for_temperature_sense_adc_conversion = (base_m4_clk_f * seconds_for_temperature_sense_adc_conversion + 1);
constexpr uint32_t reference_frequency = max283x_reference_f;
2015-07-08 11:39:24 -04:00
constexpr uint32_t pll_factor = 1.0 / (4.0 / 3.0 / reference_frequency) + 0.5;
void MAX2837::init() {
set_mode(Mode::Shutdown);
2015-07-08 11:39:24 -04:00
gpio_max283x_enable.output();
gpio_max2837_rxenable.output();
gpio_max2837_txenable.output();
2015-07-08 11:39:24 -04:00
_map.r.tx_gain.TXVGA_GAIN_SPI_EN = 1;
_map.r.tx_gain.TXVGA_GAIN_MSB_SPI_EN = 1;
_map.r.tx_gain.TXVGA_GAIN_SPI = 0x00;
2015-07-08 11:39:24 -04:00
_map.r.lpf_3_vga_1.VGAMUX_enable = 1;
_map.r.lpf_3_vga_1.VGA_EN = 1;
2015-07-08 11:39:24 -04:00
_map.r.hpfsm_3.HPC_STOP = 1; /* 1kHz */
2015-07-08 11:39:24 -04:00
_map.r.rx_top_rx_bias.LNAgain_SPI_EN = 1; /* control LNA gain from SPI */
_map.r.rxrf_2.L = 0b000;
2015-07-08 11:39:24 -04:00
_map.r.rx_top_rx_bias.VGAgain_SPI_EN = 1; /* control VGA gain from SPI */
_map.r.vga_2.VGA = 0b01010;
2015-07-08 11:39:24 -04:00
_map.r.lpf_3_vga_1.BUFF_VCM = 0b00; /* TODO: Check values out of ADC */
2015-07-08 11:39:24 -04:00
_map.r.lpf_1.LPF_EN = 1; /* Enable low-pass filter */
_map.r.lpf_1.ModeCtrl = 0b01; /* Rx LPF */
_map.r.lpf_1.FT = 0b0000; /* 1,75MHz LPF */
2015-07-08 11:39:24 -04:00
_map.r.spi_en.EN_SPI = 1; /* enable chip functions when ENABLE pin set */
2015-07-08 11:39:24 -04:00
_map.r.lo_gen.LOGEN_2GM = 0;
2015-07-08 11:39:24 -04:00
#if 0
_map.r.rxrf_1.LNA_EN = 1;
_map.r.rxrf_1.Mixer_EN = 1;
_map.r.rxrf_1.RxLO_EN = 1;
_map.r.rx_top.DOUT_DRVH = 0; /* slow down DOUT edges */
_map.r.hpfsm_4.DOUT_CSB_SEL = 0; /* DOUT not tri-stated, is independent of CSB */
_map.r.xtal_cfg.XTAL_CLKOUT_EN = 0; /* CLKOUT pin disabled. (Seems to have no effect.) */
#endif
_map.r.vga_3_rx_top.RSSI_EN_SPIenables = 1;
_map.r.vga_3_rx_top.RSSI_MODE = 1; /* RSSI independent of RXHP */
2015-07-08 11:39:24 -04:00
_dirty.set();
flush();
set_mode(Mode::Standby);
2015-07-08 11:39:24 -04:00
}
void MAX2837::set_tx_LO_iq_phase_calibration(const size_t v) {
Mode saved_mode = get_mode();
/* TX IQ phase deg CAL adj (+4 ...-4) in 32 steps (5 bits), 00000 = +4deg (Q lags I by 94degs, default), 01111 = +0deg, 11111 = -4deg (Q lags I by 86degs) */
// TX calibration , Logic pins , ENABLE, RXENABLE, TXENABLE = 1,0,1 (5dec), and Reg address 16, D1 (CAL mode 1):DO (CHIP ENABLE 1)
set_mode(Mode::Tx_Calibration); // write to ram 3 LOGIC Pins .
gpio_max283x_enable.output();
gpio_max2837_rxenable.output();
gpio_max2837_txenable.output();
_map.r.spi_en.CAL_SPI = 1; // Register Settings reg address 16, D1 (CAL mode 1)
_map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1)
flush_one(Register::SPI_EN);
_map.r.tx_lo_iq.TXLO_IQ_SPI_EN = 1; // reg 30 D5, TX LO I/Q Phase SPI Adjust. Active when Address 30 D5 (TXLO_IQ_SPI_EN) = 1.
_map.r.tx_lo_iq.TXLO_IQ_SPI = v; // reg 30 D4:D0, TX LO I/Q Phase SPI Adjust.
flush_one(Register::TX_LO_IQ);
// Exit Calibration mode, Go back to reg 16, D1:D0 , Out of CALIBRATION , back to default conditions, but keep CS activated.
_map.r.spi_en.CAL_SPI = 0; // Register Settings reg address 16, D1 (0 = Normal operation (default)
_map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (1 = Chip select enable )
flush_one(Register::SPI_EN);
set_mode(saved_mode); // restore original mode
}
enum class Mask { // There are class Mask ,and class mode with same names, but they are not same.
Enable = 0b001,
RxEnable = 0b010,
TxEnable = 0b100,
Shutdown = 0b000,
Standby = Enable,
Receive = Enable | RxEnable,
Transmit = Enable | TxEnable,
Rx_calibration = Enable | RxEnable, // sets the same 3 x logic pins to the Receive operating mode.
Tx_calibration = Enable | TxEnable, // sets the same 3 x logic pins to the Transmit operating mode.
};
Mask mode_mask(const Mode mode) { // based on enum Mode cases, we set up the correct 3 logic PINS .
switch (mode) {
case Mode::Standby:
return Mask::Standby;
case Mode::Receive:
return Mask::Receive;
case Mode::Transmit:
return Mask::Transmit;
case Mode::Rx_Calibration: // Let's add those two CAL logic pin settings- Rx and Tx calibration modes.
return Mask::Rx_calibration; // same logic pins as Receive mode = Enable | RxEnable, (the difference is in Reg add 16 D1:DO)
case Mode::Tx_Calibration: // Let's add this CAL Tx calibration mode = Transmit.
return Mask::Tx_calibration; // same logic pins as Transmit = Enable | TxEnable,(the difference is in Reg add 16 D1:DO)
default:
return Mask::Shutdown;
}
}
void MAX2837::set_mode(const Mode mode) { // We set up the 3 Logic Pins ENABLE, RXENABLE, TXENABLE accordingly to the max2837 mode case, that we want to set up .
_mode = mode;
Mask mask = mode_mask(mode);
gpio_max283x_enable.write(toUType(mask) & toUType(Mask::Enable));
gpio_max2837_rxenable.write(toUType(mask) & toUType(Mask::RxEnable));
gpio_max2837_txenable.write(toUType(mask) & toUType(Mask::TxEnable));
2015-07-08 11:39:24 -04:00
}
Mode MAX2837::get_mode() {
return _mode;
}
2015-07-08 11:39:24 -04:00
void MAX2837::flush() {
if (_dirty) {
for (size_t n = 0; n < reg_count; n++) {
if (_dirty[n]) {
write(n, _map.w[n]);
}
}
_dirty.clear();
}
2015-07-08 11:39:24 -04:00
}
void MAX2837::flush_one(const Register reg) {
const auto reg_num = toUType(reg);
write(reg_num, _map.w[reg_num]);
_dirty.clear(reg_num);
2015-07-08 11:39:24 -04:00
}
void MAX2837::write(const address_t reg_num, const reg_t value) {
uint16_t t = (0U << 15) | (reg_num << 10) | (value & 0x3ffU);
_target.transfer(&t, 1);
2015-07-08 11:39:24 -04:00
}
reg_t MAX2837::read(const address_t reg_num) {
uint16_t t = (1U << 15) | (reg_num << 10);
_target.transfer(&t, 1U);
return t & 0x3ffU;
2015-07-08 11:39:24 -04:00
}
void MAX2837::write(const Register reg, const reg_t value) {
write(toUType(reg), value);
2015-07-08 11:39:24 -04:00
}
reg_t MAX2837::read(const Register reg) {
return read(toUType(reg));
2015-07-08 11:39:24 -04:00
}
void MAX2837::set_tx_vga_gain(const int_fast8_t db) {
_map.r.tx_gain.TXVGA_GAIN_SPI = tx::gain_ordinal(db);
_dirty[Register::TX_GAIN] = 1;
flush();
2015-07-08 11:39:24 -04:00
}
void MAX2837::set_lna_gain(const int_fast8_t db) {
_map.r.rxrf_2.L = lna::gain_ordinal(db);
_dirty[Register::RXRF_2] = 1;
flush();
2015-07-08 11:39:24 -04:00
}
void MAX2837::set_vga_gain(const int_fast8_t db) {
_map.r.vga_2.VGA = vga::gain_ordinal(db);
_dirty[Register::VGA_2] = 1;
flush();
2015-07-08 11:39:24 -04:00
}
void MAX2837::set_lpf_rf_bandwidth_rx(const uint32_t bandwidth_minimum) {
_map.r.lpf_1.ModeCtrl = 0b01; /* Address reg 2, D3-D2, Set mode lowpass filter block to Rx LPF . Active when Address 6 D<9> = 1 */
_map.r.lpf_1.FT = filter::bandwidth_ordinal(bandwidth_minimum);
flush_one(Register::LPF_1);
_map.r.vga_3_rx_top.LPF_MODE_SEL = 1; /* Address 6 reg, D9 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 2 D3:D2*/
flush_one(Register::VGA_3_RX_TOP);
_map.r.vga_3_rx_top.LPF_MODE_SEL = 0; /* Leave LPF_MODE_SEL 0 = Normal operation */
flush_one(Register::VGA_3_RX_TOP);
}
void MAX2837::set_lpf_rf_bandwidth_tx(const uint32_t bandwidth_minimum) {
_map.r.lpf_1.ModeCtrl = 0b10; /* Address 2 reg, D3-D2, Set mode lowpass filter block to Tx LPF . Active when Address 6 D<9> = 1 */
_map.r.lpf_1.FT = filter::bandwidth_ordinal(bandwidth_minimum);
flush_one(Register::LPF_1);
_map.r.vga_3_rx_top.LPF_MODE_SEL = 1; /* Address 6 reg, D9 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 2 D3:D2*/
flush_one(Register::VGA_3_RX_TOP);
_map.r.vga_3_rx_top.LPF_MODE_SEL = 0; /* Leave LPF_MODE_SEL 0 = Normal operation */
flush_one(Register::VGA_3_RX_TOP);
2015-07-08 11:39:24 -04:00
}
bool MAX2837::set_frequency(const rf::Frequency lo_frequency) {
/* TODO: This is a sad implementation. Refactor. */
if (lo::band[0].contains(lo_frequency)) {
_map.r.syn_int_div.LOGEN_BSW = 0b00; /* 2300 - 2399.99MHz */
_map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */
} else if (lo::band[1].contains(lo_frequency)) {
_map.r.syn_int_div.LOGEN_BSW = 0b01; /* 2400 - 2499.99MHz */
_map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */
} else if (lo::band[2].contains(lo_frequency)) {
_map.r.syn_int_div.LOGEN_BSW = 0b10; /* 2500 - 2599.99MHz */
_map.r.rxrf_1.LNAband = 1; /* 2.5 - 2.7GHz */
} else if (lo::band[3].contains(lo_frequency)) {
_map.r.syn_int_div.LOGEN_BSW = 0b11; /* 2600 - 2700Hz */
_map.r.rxrf_1.LNAband = 1; /* 2.5 - 2.7GHz */
} else {
return false;
}
_dirty[Register::SYN_INT_DIV] = 1;
_dirty[Register::RXRF_1] = 1;
const uint64_t div_q20 = (lo_frequency * (1 << 20)) / pll_factor;
_map.r.syn_int_div.SYN_INTDIV = div_q20 >> 20;
_dirty[Register::SYN_INT_DIV] = 1;
_map.r.syn_fr_div_2.SYN_FRDIV_19_10 = (div_q20 >> 10) & 0x3ff;
_dirty[Register::SYN_FR_DIV_2] = 1;
/* flush to commit high FRDIV first, as low FRDIV commits the change */
flush();
_map.r.syn_fr_div_1.SYN_FRDIV_9_0 = (div_q20 & 0x3ff);
_dirty[Register::SYN_FR_DIV_1] = 1;
flush();
return true;
2015-07-08 11:39:24 -04:00
}
/*
void MAX2837::set_rx_lo_iq_calibration(const size_t v) { // Original code , rewritten below
_map.r.rx_top_rx_bias.RX_IQERR_SPI_EN = 1;
_dirty[Register::RX_TOP_RX_BIAS] = 1;
_map.r.rxrf_2.iqerr_trim = v;
_dirty[Register::RXRF_2] = 1;
flush();
}
*/
void MAX2837::set_rx_LO_iq_phase_calibration(const size_t v) {
/* RX IQ phase deg CAL adj (+4 ...-4) in 32 steps (5 bits), 00000 = +4deg (Q lags I by 94degs, default), 01111 = +0deg, 11111 = -4deg (Q lags I by 86degs) */
// RX calibration , Logic pins , ENABLE, RXENABLE, TXENABLE = 1,1,0 (3dec), and Reg address 16, D1 (CAL mode 1):DO (CHIP ENABLE 1)
set_mode(Mode::Rx_Calibration); // write to ram 3 LOGIC Pins .
gpio_max283x_enable.output();
gpio_max2837_rxenable.output();
gpio_max2837_txenable.output();
_map.r.spi_en.CAL_SPI = 1; // Register Settings reg address 16, D1 (CAL mode 1)
_map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1)
flush_one(Register::SPI_EN);
_map.r.rx_top_rx_bias.RX_IQERR_SPI_EN = 1; // reg 8 D9, RX LO IQ Phase calibration SPI control. Active when Address 8 D<9> = 1.
flush_one(Register::RX_TOP_RX_BIAS);
_map.r.rxrf_2.iqerr_trim = v; // reg 1 D9:D5, RX LO I/Q Phase SPI 5 bits Adjust
flush_one(Register::RXRF_2);
// Exit Calibration mode, Go back to reg 16, D1:D0 , Out of CALIBRATION , back to default conditions, but keep CS activated.
_map.r.spi_en.CAL_SPI = 0; // Register Settings reg address 16, D1 (0 = Normal operation (default)
_map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (1 = Chip select enable )
flush_one(Register::SPI_EN);
}
void MAX2837::set_rx_bias_trim(const size_t v) {
_map.r.rx_top_rx_bias.EN_Bias_Trim = 1;
_map.r.rx_top_rx_bias.BIAS_TRIM_SPI = v;
_dirty[Register::RX_TOP_RX_BIAS] = 1;
flush();
}
void MAX2837::set_vco_bias(const size_t v) {
_map.r.vco_cfg.VCO_BIAS_SPI_EN = 1;
_map.r.vco_cfg.VCO_BIAS_SPI = v;
_dirty[Register::VCO_CFG] = 1;
flush();
}
void MAX2837::set_rx_buff_vcm(const size_t v) {
_map.r.lpf_3_vga_1.BUFF_VCM = v;
_dirty[Register::LPF_3_VGA_1] = 1;
flush();
}
int8_t MAX2837::temp_sense() {
if (!_map.r.rx_top.ts_en) {
_map.r.rx_top.ts_en = 1;
flush_one(Register::RX_TOP);
2015-07-08 11:39:24 -04:00
chThdSleepMilliseconds(1);
}
2015-07-08 11:39:24 -04:00
_map.r.rx_top.ts_adc_trigger = 1;
flush_one(Register::RX_TOP);
2015-07-08 11:39:24 -04:00
halPolledDelay(ticks_for_temperature_sense_adc_conversion);
2015-07-08 11:39:24 -04:00
/*
* Conversion to degrees C determined by testing - does not match data sheet.
*/
reg_t value = read(Register::TEMP_SENSE) & 0x1F;
2015-07-08 11:39:24 -04:00
_map.r.rx_top.ts_adc_trigger = 0;
flush_one(Register::RX_TOP);
2015-07-08 11:39:24 -04:00
return std::min(127, (int)(value * 4.31 - 40)); // reg value is 0 to 31; possible return range is -40 C to 127 C
2015-07-08 11:39:24 -04:00
}
} // namespace max2837