2017-07-23 07:20:32 -04:00
/*
* Copyright ( C ) 2014 Jared Boone , ShareBrained Technology , Inc .
* Copyright ( C ) 2016 Furrtek
*
* This file is part of PortaPack .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 , or ( at your option )
* any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; see the file COPYING . If not , write to
* the Free Software Foundation , Inc . , 51 Franklin Street ,
* Boston , MA 02110 - 1301 , USA .
*/
# include "adsb.hpp"
2017-07-25 03:30:12 -04:00
# include "sine_table.hpp"
2017-07-23 07:20:32 -04:00
# include <math.h>
namespace adsb {
2017-07-25 03:30:12 -04:00
void make_frame_adsb ( ADSBFrame & frame , const uint32_t ICAO_address ) {
2017-07-23 07:20:32 -04:00
frame . clear ( ) ;
2017-07-25 03:30:12 -04:00
frame . push_byte ( ( DF_ADSB < < 3 ) | 5 ) ; // DF and CA
2017-07-23 07:20:32 -04:00
frame . push_byte ( ICAO_address > > 16 ) ;
frame . push_byte ( ICAO_address > > 8 ) ;
frame . push_byte ( ICAO_address & 0xFF ) ;
}
2017-07-25 03:30:12 -04:00
void encode_frame_id ( ADSBFrame & frame , const uint32_t ICAO_address , const std : : string & callsign ) {
2017-07-23 07:20:32 -04:00
std : : string callsign_formatted ( 8 , ' _ ' ) ;
uint64_t callsign_coded = 0 ;
uint32_t c , s ;
char ch ;
2017-07-25 03:30:12 -04:00
make_frame_adsb ( frame , ICAO_address ) ;
2017-07-23 07:20:32 -04:00
2017-07-25 03:30:12 -04:00
frame . push_byte ( TC_IDENT < < 3 ) ; // No aircraft category
2017-07-23 07:20:32 -04:00
// Translate and encode callsign
for ( c = 0 ; c < 8 ; c + + ) {
ch = callsign [ c ] ;
for ( s = 0 ; s < 64 ; s + + )
if ( ch = = icao_id_lut [ s ] ) break ;
if ( s = = 64 ) {
ch = ' ' ; // Invalid character
s = 32 ;
}
callsign_coded < < = 6 ;
callsign_coded | = s ;
//callsign[c] = ch;
}
// Insert callsign in frame
for ( c = 0 ; c < 6 ; c + + )
frame . push_byte ( ( callsign_coded > > ( ( 5 - c ) * 8 ) ) & 0xFF ) ;
frame . make_CRC ( ) ;
}
2017-08-16 05:02:57 -04:00
std : : string decode_frame_id ( ADSBFrame & frame ) {
std : : string callsign = " " ;
uint8_t * raw_data = frame . get_raw_data ( ) ;
uint64_t callsign_coded = 0 ;
uint32_t c ;
// Frame bytes to long
for ( c = 5 ; c < 11 ; c + + ) {
callsign_coded < < = 8 ;
callsign_coded | = raw_data [ c ] ;
}
// Long to 6-bit characters
for ( c = 0 ; c < 8 ; c + + ) {
callsign . append ( 1 , icao_id_lut [ ( callsign_coded > > 42 ) & 0x3F ] ) ;
callsign_coded < < = 6 ;
}
return callsign ;
}
2017-07-23 07:20:32 -04:00
/*void generate_frame_emergency(ADSBFrame& frame, const uint32_t ICAO_address, const uint8_t code) {
make_frame_mode_s ( frame , ICAO_address ) ;
frame . push_byte ( ( 28 < < 3 ) + 1 ) ; // TC = 28 (Emergency), subtype = 1 (Emergency)
frame . push_byte ( code < < 5 ) ;
frame . make_CRC ( ) ;
} */
2017-07-25 03:30:12 -04:00
void encode_frame_squawk ( ADSBFrame & frame , const uint32_t squawk ) {
uint32_t squawk_coded ;
2017-07-23 07:20:32 -04:00
frame . clear ( ) ;
2017-07-25 03:30:12 -04:00
frame . push_byte ( DF_EHS_SQUAWK < < 3 ) ; // DF
2017-07-23 07:20:32 -04:00
frame . push_byte ( 0 ) ;
2017-07-25 03:30:12 -04:00
// 12 11 10 9 8 7 6 5 4 3 2 1 0
// 31 30 29 28 27 26 25 24 23 22 21 20 19
// D4 B4 D2 B2 D1 B1 __ A4 C4 A2 C2 A1 C1
// ABCD = code (octal, 0000~7777)
// FEDCBA9876543210
// xAAAxBBBxCCCxDDD
// x421x421x421x421
squawk_coded = ( ( squawk < < 10 ) & 0x1000 ) | // D4
( ( squawk < < 1 ) & 0x0800 ) | // B4
( ( squawk < < 9 ) & 0x0400 ) | // D2
( ( squawk < < 0 ) & 0x0200 ) | // B2
( ( squawk < < 8 ) & 0x0100 ) | // D1
( ( squawk > > 1 ) & 0x0080 ) | // B1
( ( squawk > > 9 ) & 0x0020 ) | // A4
( ( squawk > > 2 ) & 0x0010 ) | // C4
( ( squawk > > 10 ) & 0x0008 ) | // A2
( ( squawk > > 3 ) & 0x0004 ) | // C2
( ( squawk > > 11 ) & 0x0002 ) | // A1
( ( squawk > > 4 ) & 0x0001 ) ; // C1
frame . push_byte ( squawk_coded > > 5 ) ;
frame . push_byte ( squawk_coded < < 3 ) ;
2017-07-23 07:20:32 -04:00
frame . make_CRC ( ) ;
}
float cpr_mod ( float a , float b ) {
2017-08-17 07:56:47 -04:00
return a - ( b * floor ( a / b ) ) ;
2017-07-23 07:20:32 -04:00
}
2021-06-19 18:41:06 -04:00
int cpr_NL_precise ( float lat ) {
return ( int ) floor ( 2 * PI / acos ( 1 - ( ( 1 - cos ( PI / ( 2 * NZ ) ) ) / pow ( cos ( PI * lat / 180 ) , 2 ) ) ) ) ;
}
int cpr_NL_approx ( float lat ) {
2017-08-17 07:56:47 -04:00
if ( lat < 0 )
2017-07-23 07:20:32 -04:00
lat = - lat ; // Symmetry
for ( size_t c = 0 ; c < 58 ; c + + ) {
if ( lat < adsb_lat_lut [ c ] )
return 59 - c ;
}
2021-06-19 18:41:06 -04:00
return 1 ;
}
int cpr_NL ( float lat ) {
2021-06-23 14:54:34 -04:00
// TODO prove that the approximate function is good
// enough for the precision we need. Uncomment if
2021-06-23 18:52:15 -04:00
// that is true. No performance penalty was noticed
// from testing, but if you find it might be an issue,
// switch to cpr_NL_approx() instead:
2021-06-23 14:54:34 -04:00
//return cpr_NL_approx(lat);
2021-06-19 18:41:06 -04:00
return cpr_NL_precise ( lat ) ;
2017-07-23 07:20:32 -04:00
}
int cpr_N ( float lat , int is_odd ) {
int nl = cpr_NL ( lat ) - is_odd ;
if ( nl < 1 )
nl = 1 ;
return nl ;
}
2017-08-17 07:56:47 -04:00
float cpr_Dlon ( float lat , int is_odd ) {
return 360.0 / cpr_N ( lat , is_odd ) ;
}
2017-08-03 14:06:59 -04:00
void encode_frame_pos ( ADSBFrame & frame , const uint32_t ICAO_address , const int32_t altitude ,
2017-07-23 07:20:32 -04:00
const float latitude , const float longitude , const uint32_t time_parity ) {
2017-07-25 03:30:12 -04:00
2017-07-23 07:20:32 -04:00
uint32_t altitude_coded ;
uint32_t lat , lon ;
float delta_lat , yz , rlat , delta_lon , xz ;
2017-07-25 03:30:12 -04:00
make_frame_adsb ( frame , ICAO_address ) ;
2017-07-23 07:20:32 -04:00
2017-07-25 03:30:12 -04:00
frame . push_byte ( TC_AIRBORNE_POS < < 3 ) ; // Bits 2~1: Surveillance Status, bit 0: NICsb
2017-07-23 07:20:32 -04:00
2017-07-25 03:30:12 -04:00
altitude_coded = ( altitude + 1000 ) / 25 ; // 25ft precision, insert Q-bit (1)
altitude_coded = ( ( altitude_coded & 0x7F0 ) < < 1 ) | 0x10 | ( altitude_coded & 0x0F ) ;
2017-07-23 07:20:32 -04:00
2017-07-25 03:30:12 -04:00
frame . push_byte ( altitude_coded > > 4 ) ; // Top-most altitude bits
2017-07-23 07:20:32 -04:00
// CPR encoding
2017-07-25 03:30:12 -04:00
// Info from: http://antena.fe.uni-lj.si/literatura/Razno/Avionika/modes/CPRencoding.pdf
2017-07-23 07:20:32 -04:00
2021-06-23 18:52:15 -04:00
delta_lat = 360.0 / ( ( 4.0 * NZ ) - time_parity ) ; // NZ = 15
yz = floor ( CPR_MAX_VALUE * ( cpr_mod ( latitude , delta_lat ) / delta_lat ) + 0.5 ) ;
rlat = delta_lat * ( ( yz / CPR_MAX_VALUE ) + floor ( latitude / delta_lat ) ) ;
2017-07-23 07:20:32 -04:00
if ( ( cpr_NL ( rlat ) - time_parity ) > 0 )
delta_lon = 360.0 / cpr_N ( rlat , time_parity ) ;
else
delta_lon = 360.0 ;
2021-06-23 18:52:15 -04:00
xz = floor ( CPR_MAX_VALUE * ( cpr_mod ( longitude , delta_lon ) / delta_lon ) + 0.5 ) ;
2017-07-23 07:20:32 -04:00
2021-06-23 18:52:15 -04:00
lat = cpr_mod ( yz , CPR_MAX_VALUE ) ;
lon = cpr_mod ( xz , CPR_MAX_VALUE ) ;
2017-07-23 07:20:32 -04:00
2017-07-25 03:30:12 -04:00
frame . push_byte ( ( altitude_coded < < 4 ) | ( ( uint32_t ) time_parity < < 2 ) | ( lat > > 15 ) ) ; // T = 0
2017-07-23 07:20:32 -04:00
frame . push_byte ( lat > > 7 ) ;
frame . push_byte ( ( lat < < 1 ) | ( lon > > 16 ) ) ;
frame . push_byte ( lon > > 8 ) ;
frame . push_byte ( lon ) ;
frame . make_CRC ( ) ;
}
2017-08-17 07:56:47 -04:00
// Decoding method from dump1090
adsb_pos decode_frame_pos ( ADSBFrame & frame_even , ADSBFrame & frame_odd ) {
uint8_t * raw_data ;
uint32_t latcprE , latcprO , loncprE , loncprO ;
2019-05-21 11:44:14 -04:00
float latE , latO , m , Dlon , cpr_lon_odd , cpr_lon_even , cpr_lat_odd , cpr_lat_even ;
2017-08-17 07:56:47 -04:00
int ni ;
adsb_pos position { false , 0 , 0 , 0 } ;
uint32_t time_even = frame_even . get_rx_timestamp ( ) ;
uint32_t time_odd = frame_odd . get_rx_timestamp ( ) ;
uint8_t * frame_data_even = frame_even . get_raw_data ( ) ;
uint8_t * frame_data_odd = frame_odd . get_raw_data ( ) ;
// Return most recent altitude
if ( time_even > time_odd )
raw_data = frame_data_even ;
else
raw_data = frame_data_odd ;
// Q-bit must be present
if ( raw_data [ 5 ] & 1 )
position . altitude = ( ( ( ( raw_data [ 5 ] & 0xFE ) < < 3 ) | ( ( raw_data [ 6 ] & 0xF0 ) > > 4 ) ) * 25 ) - 1000 ;
// Position
latcprE = ( ( frame_data_even [ 6 ] & 3 ) < < 15 ) | ( frame_data_even [ 7 ] < < 7 ) | ( frame_data_even [ 8 ] > > 1 ) ;
loncprE = ( ( frame_data_even [ 8 ] & 1 ) < < 16 ) | ( frame_data_even [ 9 ] < < 8 ) | frame_data_even [ 10 ] ;
2017-08-16 05:02:57 -04:00
2017-08-17 07:56:47 -04:00
latcprO = ( ( frame_data_odd [ 6 ] & 3 ) < < 15 ) | ( frame_data_odd [ 7 ] < < 7 ) | ( frame_data_odd [ 8 ] > > 1 ) ;
loncprO = ( ( frame_data_odd [ 8 ] & 1 ) < < 16 ) | ( frame_data_odd [ 9 ] < < 8 ) | frame_data_odd [ 10 ] ;
2019-05-21 11:44:14 -04:00
// Calculate the coefficients
cpr_lon_even = loncprE / CPR_MAX_VALUE ;
cpr_lon_odd = loncprO / CPR_MAX_VALUE ;
cpr_lat_odd = latcprO / CPR_MAX_VALUE ;
cpr_lat_even = latcprE / CPR_MAX_VALUE ;
2017-08-17 07:56:47 -04:00
// Compute latitude index
2019-05-21 11:44:14 -04:00
float j = floor ( ( ( 59.0 * cpr_lat_even ) - ( 60.0 * cpr_lat_odd ) ) + 0.5 ) ;
latE = ( 360.0 / 60.0 ) * ( cpr_mod ( j , 60 ) + cpr_lat_even ) ;
latO = ( 360.0 / 59.0 ) * ( cpr_mod ( j , 59 ) + cpr_lat_odd ) ;
2017-08-17 07:56:47 -04:00
if ( latE > = 270 ) latE - = 360 ;
if ( latO > = 270 ) latO - = 360 ;
// Both frames must be in the same latitude zone
if ( cpr_NL ( latE ) ! = cpr_NL ( latO ) )
return position ;
// Compute longitude
if ( time_even > time_odd ) {
2021-06-19 18:41:06 -04:00
// Use even frame2
2017-08-17 07:56:47 -04:00
ni = cpr_N ( latE , 0 ) ;
Dlon = 360.0 / ni ;
2019-05-21 11:44:14 -04:00
m = floor ( ( cpr_lon_even * ( cpr_NL ( latE ) - 1 ) ) - ( cpr_lon_odd * cpr_NL ( latE ) ) + 0.5 ) ;
2017-08-17 07:56:47 -04:00
2019-05-21 11:44:14 -04:00
position . longitude = Dlon * ( cpr_mod ( m , ni ) + cpr_lon_even ) ;
2017-08-17 07:56:47 -04:00
position . latitude = latE ;
} else {
// Use odd frame
ni = cpr_N ( latO , 1 ) ;
Dlon = 360.0 / ni ;
2019-05-21 11:44:14 -04:00
m = floor ( ( cpr_lon_even * ( cpr_NL ( latO ) - 1 ) ) - ( cpr_lon_odd * cpr_NL ( latO ) ) + 0.5 ) ;
2017-08-17 07:56:47 -04:00
2019-05-21 11:44:14 -04:00
position . longitude = Dlon * ( cpr_mod ( m , ni ) + cpr_lon_odd ) ;
2017-08-17 07:56:47 -04:00
position . latitude = latO ;
}
2017-08-16 05:02:57 -04:00
2021-06-19 18:41:06 -04:00
if ( position . longitude > = 180 ) position . longitude - = 360 ;
2017-08-17 07:56:47 -04:00
position . valid = true ;
return position ;
2017-08-16 05:02:57 -04:00
}
2017-07-25 03:30:12 -04:00
// speed is in knots
// vertical rate is in ft/min
void encode_frame_velo ( ADSBFrame & frame , const uint32_t ICAO_address , const uint32_t speed ,
const float angle , const int32_t v_rate ) {
int32_t velo_ew , velo_ns , v_rate_coded ;
uint32_t velo_ew_abs , velo_ns_abs , v_rate_coded_abs ;
// To get NS and EW speeds from speed and bearing, a polar to cartesian conversion is enough
2023-01-01 17:23:06 -05:00
velo_ew = static_cast < int32_t > ( sin_f32 ( DEG_TO_RAD ( angle ) ) * speed ) ; // East direction, is the projection from West -> East is directly sin(angle=Compas Bearing) , (90º is the max +1, EAST) max velo_EW
velo_ns = static_cast < int32_t > ( sin_f32 ( ( pi / 2 - DEG_TO_RAD ( angle ) ) ) * speed ) ; // North direction,is the projection of North = cos(angle=Compas Bearing), cos(angle)= sen(90-angle) (0º is the max +1 NORTH) max velo_NS
2017-07-25 03:30:12 -04:00
2023-01-01 17:23:06 -05:00
v_rate_coded = ( v_rate / 64 ) + 1 ; //encoding vertical rate source. (Decoding, VR ft/min = (Decimal v_rate_value - 1)* 64)
2017-07-25 03:30:12 -04:00
2023-01-01 17:23:06 -05:00
velo_ew_abs = abs ( velo_ew ) + 1 ; // encoding Velo speed EW , when sign Direction is 0 (+): West->East, (-) 1: East->West
velo_ns_abs = abs ( velo_ns ) + 1 ; // encoding Velo speed NS , when sign Direction is 0 (+): South->North , (-) 1: North->South
2017-07-25 03:30:12 -04:00
v_rate_coded_abs = abs ( v_rate_coded ) ;
make_frame_adsb ( frame , ICAO_address ) ;
2023-01-01 17:23:06 -05:00
// Airborne velocities are all transmitted with Type Code 19 ( TC=19, using 5 bits ,TC=19 [Binary: 10011]), the following 3 bits are Subt-type Code ,SC= 1,2,3,4
// SC Subtypes code 1 and 2 are used to report ground speeds of aircraft. (SC 3,4 to used to report true airspeed. SC 2,4 are for supersonic aircraft (not used in commercial airline).
frame . push_byte ( ( TC_AIRBORNE_VELO < < 3 ) | 1 ) ; // 1st byte , top 5 bits Type Code TC=19, and lower 3 bits (38-40 bits), SC=001 Subtype Code SC: 1 (subsonic) ,
// Message A, (ME bits from 14-35) , 22 bits = Sign ew(1 bit) + V_ew (10 bits) + Sign_ns (1 bit) + V_ns (10 bits)
// Vertical rate source bit VrSrc (ME bit 36) indicates source of the altitude measurements. GNSS altitude(0) / , barometric altitude(1).
// Vertical rate source direction,(ME bit 37) movement can be read from Svr bit , with 0 and 1 referring to climb and descent, respectively (ft/min)
// The encoded vertical rate value VR can be computed using message (ME bits 38 to 46). If the 9-bit block contains all zeros, the vertical rate information is not available.
// + Sign VrSrc (vert rate src) (1 bit)+ VrSrc (9 bits).
2017-07-25 03:30:12 -04:00
frame . push_byte ( ( ( velo_ew < 0 ? 1 : 0 ) < < 2 ) | ( velo_ew_abs > > 8 ) ) ;
frame . push_byte ( velo_ew_abs ) ;
frame . push_byte ( ( ( velo_ns < 0 ? 1 : 0 ) < < 7 ) | ( velo_ns_abs > > 3 ) ) ;
frame . push_byte ( ( velo_ns_abs < < 5 ) | ( ( v_rate_coded < 0 ? 1 : 0 ) < < 3 ) | ( v_rate_coded_abs > > 6 ) ) ; // VrSrc = 0
frame . push_byte ( v_rate_coded_abs < < 2 ) ;
frame . push_byte ( 0 ) ;
frame . make_CRC ( ) ;
}
2020-07-24 17:09:21 -04:00
// Decoding method from dump1090
adsb_vel decode_frame_velo ( ADSBFrame & frame ) {
2021-01-27 09:38:05 -05:00
adsb_vel velo { false , 0 , 0 , 0 } ;
2020-07-24 17:09:21 -04:00
uint8_t * frame_data = frame . get_raw_data ( ) ;
uint8_t velo_type = frame . get_msg_sub ( ) ;
if ( velo_type > = 1 & & velo_type < = 4 ) { //vertical rate is always present
2021-01-27 09:38:05 -05:00
velo . v_rate = ( ( ( frame_data [ 8 ] & 0x07 ) < < 6 ) | ( ( frame_data [ 9 ] > > 2 ) - 1 ) ) * 64 ;
2020-07-24 17:09:21 -04:00
if ( ( frame_data [ 8 ] & 0x8 ) > > 3 ) velo . v_rate * = - 1 ; //check v_rate sign
}
if ( velo_type = = 1 | | velo_type = = 2 ) { //Ground Speed
2020-08-10 23:55:20 -04:00
int32_t raw_ew = ( ( frame_data [ 5 ] & 0x03 ) < < 8 ) | frame_data [ 6 ] ;
int32_t velo_ew = raw_ew - 1 ; //velocities are all offset by one (this is part of the spec)
int32_t raw_ns = ( ( frame_data [ 7 ] & 0x7f ) < < 3 ) | ( frame_data [ 8 ] > > 5 ) ;
int32_t velo_ns = raw_ns - 1 ;
2020-07-24 17:09:21 -04:00
if ( velo_type = = 2 ) { // supersonic indicator so multiply by 4
velo_ew = velo_ew < < 2 ;
velo_ns = velo_ns < < 2 ;
}
2020-08-10 23:55:20 -04:00
if ( frame_data [ 5 ] & 0x04 ) velo_ew * = - 1 ; //check ew direction sign
if ( frame_data [ 7 ] & 0x80 ) velo_ns * = - 1 ; //check ns direction sign
2020-07-24 17:09:21 -04:00
velo . speed = sqrt ( velo_ns * velo_ns + velo_ew * velo_ew ) ;
2020-07-25 11:21:56 -04:00
2020-07-24 17:09:21 -04:00
if ( velo . speed ) {
//calculate heading in degrees from ew/ns velocities
2020-07-25 11:21:56 -04:00
int16_t heading_temp = ( int16_t ) ( atan2 ( velo_ew , velo_ns ) * 180.0 / pi ) ;
2020-07-24 17:09:21 -04:00
// We don't want negative values but a 0-360 scale.
2020-07-25 11:21:56 -04:00
if ( heading_temp < 0 ) heading_temp + = 360.0 ;
velo . heading = ( uint16_t ) heading_temp ;
2020-07-24 17:09:21 -04:00
}
} else if ( velo_type = = 3 | | velo_type = = 4 ) { //Airspeed
velo . valid = frame_data [ 5 ] & ( 1 < < 2 ) ;
velo . heading = ( ( ( ( frame_data [ 5 ] & 0x03 ) < < 8 ) | frame_data [ 6 ] ) * 45 ) < < 7 ;
}
return velo ;
}
2017-07-23 07:20:32 -04:00
} /* namespace adsb */