- trim_tree now re-adds trimmed outputs back to the locked outputs
table. remove_output then deletes from the locked output table.
- Since outputs added to the tree in a specific block may have
originated from distinct younger blocks (thanks to distinct unlock
times), we need to store the 8 byte output_id in the leaves table
as well, so that in the event of a reorg, upon removing outputs
from the tree we can add them back to the locked outputs table
in the correct order.
- Reverted back to storing output_id in locked_outputs table; it's
required to make sure outputs enter the tree in chain order I see
no other simple way.
- Removed unnecessary comments and db flags (MDB_APPENDDUP already
makes sure key/value doesn't already exist, and when inserting,
every global output id should be unique, so should never get that
error)
- We must use the output pubkey to calculate key image generator I
- Since torsion cleared outputs can be spent via ring sig today,
if we torsion clear outputs **before** calculating I, then the key
image of torsioned outputs will be different when constructing
fcmp's, effectively enabling a double spend of torsioned outputs
via ring sig before fcmp's and again via fcmp.
- Storing {output pubkey, commitment} instead of {O.x,I.x,C.x} to
save 32 bytes per output.
- Removed call to hash_init_point in constructor
- Replaced global static CURVE_TREES_V1 with a smart pointer
- Don't need to link Rust static lib when including curve_trees.h
- leaves table doesn't need dupsort flags, all leaves should be
unique by key
- rename fcmp -> fcmp_pp
- return when 0 leaves passed into trim_tree
- Can derive {O.x,I.x,C.x} from {O,C}
- Note: this slows down tests since they do the derivation both
on insertion into the tree, and when auditing the tree
- At the hard fork, we don't need to store {O,C} in the
output_amounts table anymore since that table will no longer be
useful
- validate output and commitment in tuple conversion function
- function to get_unlock_height from height in chain + unlock_time
- tx_outs_to_leaf_tuples function
- cleaned up trim impl (reduced num params in instructions and
conditional complexity)
- renamed locked_outputs table to locked_leaves (clearer tie to
merkle tree)
- size_t -> uint64_t for db compatibility across 32-bit and 64-bit
machines
- added hash_grow tests
The initial impl didn't capture the following edge case:
- Tree has 3 (or more) layers + 1 leaf layeri
- Leaf layer last chunk IS full
- Layer 0 last chunk is NOT full
- Layer 1 last chunk is NOT full
- Layer 2 last chunk IS NOT full
In this case, when updating layer 1, we need to use layer 0's old
last hash to update layer 1's old last hash. Same for Layer 2.
The solution is to use logic that checks the *prev* layer when
updating a layer to determine if the old last hash from the prev
layer is needed.
This commit restructures the grow_tree impl to account for this
and simplifies the approach as follows:
1. Read the tree to get num leaf tuples + last hashes in each layer
2. Get the tree extension using the above values + new leaf tuples
2a. Prior to updating the leaf layer, call the function
get_update_leaf_layer_metadata. This function uses existing totals
in the leaf layer, the new total of leaf tuples, and tree params
to calculate how the layer after the leaf layer should be updated.
2b. For each subsequent layer, call the function
get_update_layer_metadata. This function uses the existing totals
in the *prev* layer, the new total of children in the *prev* layer,
and tree params to calculate how the layer should be updated.
3. Grow the tree using the tree extension.
This approach isolates update logic and actual hashing into neat
structured functions, rather than mix the two. This makes the code
easier to follow without needing to keep so much in your head at
one time.
- When retrieving last chunks, set next_start_child_chunk_index
so can know the correct start index without needing to modify
the offset
- Other smaller cleanup