mirror of
https://github.com/monero-project/monero.git
synced 2025-02-10 12:38:31 -05:00
Better tests for hash_trim
This commit is contained in:
parent
4be2d7cf91
commit
55caee9a10
@ -968,150 +968,225 @@ TEST(curve_trees, grow_tree)
|
||||
//----------------------------------------------------------------------------------------------------------------------
|
||||
TEST(curve_trees, trim_tree)
|
||||
{
|
||||
// TODO: consolidate code from grow_tree test
|
||||
Helios helios;
|
||||
Selene selene;
|
||||
|
||||
LOG_PRINT_L1("Test trim tree with helios chunk width " << HELIOS_CHUNK_WIDTH
|
||||
<< ", selene chunk width " << SELENE_CHUNK_WIDTH);
|
||||
// Use lower values for chunk width than prod so that we can quickly test a many-layer deep tree
|
||||
static const std::size_t helios_chunk_width = 3;
|
||||
static const std::size_t selene_chunk_width = 3;
|
||||
|
||||
static_assert(helios_chunk_width > 1, "helios width must be > 1");
|
||||
static_assert(selene_chunk_width > 1, "selene width must be > 1");
|
||||
|
||||
LOG_PRINT_L1("Test trim tree with helios chunk width " << helios_chunk_width
|
||||
<< ", selene chunk width " << selene_chunk_width);
|
||||
|
||||
// Constant for how deep we want the tree
|
||||
static const std::size_t TEST_N_LAYERS = 4;
|
||||
|
||||
// Number of leaves for which x number of layers is required
|
||||
std::size_t leaves_needed_for_n_layers = selene_chunk_width;
|
||||
for (std::size_t i = 1; i < TEST_N_LAYERS; ++i)
|
||||
{
|
||||
const std::size_t width = i % 2 == 0 ? selene_chunk_width : helios_chunk_width;
|
||||
leaves_needed_for_n_layers *= width;
|
||||
}
|
||||
|
||||
auto curve_trees = CurveTreesV1(
|
||||
helios,
|
||||
selene,
|
||||
HELIOS_CHUNK_WIDTH,
|
||||
SELENE_CHUNK_WIDTH);
|
||||
helios_chunk_width,
|
||||
selene_chunk_width);
|
||||
|
||||
unit_test::BlockchainLMDBTest test_db;
|
||||
|
||||
static_assert(HELIOS_CHUNK_WIDTH > 1, "helios width must be > 1");
|
||||
static_assert(SELENE_CHUNK_WIDTH > 1, "selene width must be > 1");
|
||||
|
||||
// Number of leaves for which x number of layers is required
|
||||
const std::size_t NEED_1_LAYER = SELENE_CHUNK_WIDTH;
|
||||
const std::size_t NEED_2_LAYERS = NEED_1_LAYER * HELIOS_CHUNK_WIDTH;
|
||||
const std::size_t NEED_3_LAYERS = NEED_2_LAYERS * SELENE_CHUNK_WIDTH;
|
||||
|
||||
const std::vector<std::size_t> N_LEAVES{
|
||||
// Basic tests
|
||||
1,
|
||||
2,
|
||||
|
||||
// Test with number of leaves {-1,0,+1} relative to chunk width boundaries
|
||||
NEED_1_LAYER-1,
|
||||
NEED_1_LAYER,
|
||||
NEED_1_LAYER+1,
|
||||
|
||||
NEED_2_LAYERS-1,
|
||||
NEED_2_LAYERS,
|
||||
NEED_2_LAYERS+1,
|
||||
|
||||
NEED_3_LAYERS-1,
|
||||
NEED_3_LAYERS,
|
||||
NEED_3_LAYERS+1,
|
||||
};
|
||||
|
||||
for (const std::size_t init_leaves : N_LEAVES)
|
||||
{
|
||||
if (init_leaves == 1)
|
||||
continue;
|
||||
// Increment to test for off-by-1
|
||||
++leaves_needed_for_n_layers;
|
||||
|
||||
// First initialize the tree with init_leaves
|
||||
for (std::size_t init_leaves = 2; init_leaves <= leaves_needed_for_n_layers; ++init_leaves)
|
||||
{
|
||||
LOG_PRINT_L1("Initializing tree with " << init_leaves << " leaves in memory");
|
||||
CurveTreesGlobalTree global_tree(curve_trees);
|
||||
|
||||
// Initialize global tree with `init_leaves`
|
||||
LOG_PRINT_L1("Initializing tree with " << init_leaves << " leaves in memory");
|
||||
ASSERT_TRUE(grow_tree(curve_trees, global_tree, init_leaves));
|
||||
MDEBUG("Successfully added initial " << init_leaves << " leaves to tree in memory");
|
||||
|
||||
for (const std::size_t trim_leaves : N_LEAVES)
|
||||
// Then extend the tree with ext_leaves
|
||||
for (std::size_t trim_leaves = 1; trim_leaves < leaves_needed_for_n_layers; ++trim_leaves)
|
||||
{
|
||||
// Can't trim more leaves than exist in tree, and tree must always have at least 1 leaf in it
|
||||
if (trim_leaves >= init_leaves)
|
||||
continue;
|
||||
|
||||
// Copy the already initialized tree
|
||||
// Copy the already existing global tree
|
||||
CurveTreesGlobalTree tree_copy(global_tree);
|
||||
ASSERT_TRUE(trim_tree_in_memory(init_leaves, trim_leaves, std::move(tree_copy)));
|
||||
|
||||
ASSERT_TRUE(trim_tree_in_memory(trim_leaves, std::move(tree_copy)));
|
||||
}
|
||||
}
|
||||
}
|
||||
// TODO: write tests with more layers, but smaller widths so the tests run in a reasonable amount of time
|
||||
//----------------------------------------------------------------------------------------------------------------------
|
||||
// Make sure the result of hash_trim is the same as the equivalent hash_grow excluding the trimmed children
|
||||
TEST(curve_trees, hash_trim)
|
||||
{
|
||||
// https://github.com/kayabaNerve/fcmp-plus-plus/blob
|
||||
// /b2742e86f3d18155fd34dd1ed69cb8f79b900fce/crypto/fcmps/src/tests.rs#L81-L82
|
||||
const std::size_t helios_chunk_width = 38;
|
||||
const std::size_t selene_chunk_width = 18;
|
||||
|
||||
Helios helios;
|
||||
Selene selene;
|
||||
auto curve_trees = CurveTreesV1(
|
||||
helios,
|
||||
selene,
|
||||
HELIOS_CHUNK_WIDTH,
|
||||
SELENE_CHUNK_WIDTH);
|
||||
helios_chunk_width,
|
||||
selene_chunk_width);
|
||||
|
||||
// Selene
|
||||
// Generate 3 random leaf tuples
|
||||
const std::size_t NUM_LEAF_TUPLES = 3;
|
||||
const std::size_t NUM_LEAVES = NUM_LEAF_TUPLES * CurveTreesV1::LEAF_TUPLE_SIZE;
|
||||
const auto grow_leaves = generate_random_leaves(curve_trees, NUM_LEAF_TUPLES);
|
||||
const auto grow_children = curve_trees.flatten_leaves(grow_leaves);
|
||||
const auto &grow_chunk = Selene::Chunk{grow_children.data(), grow_children.size()};
|
||||
// 1. Trim 1
|
||||
{
|
||||
// Start by hashing: {selene_scalar_0, selene_scalar_1}
|
||||
// Then trim to: {selene_scalar_0}
|
||||
const auto selene_scalar_0 = generate_random_selene_scalar();
|
||||
const auto selene_scalar_1 = generate_random_selene_scalar();
|
||||
|
||||
// Hash the leaves
|
||||
const auto init_grow_result = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*first_child_after_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ grow_chunk);
|
||||
// Get the initial hash of the 2 scalars
|
||||
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1};
|
||||
const auto init_hash = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
||||
|
||||
// Trim the initial result
|
||||
const std::size_t trim_offset = NUM_LEAVES - CurveTreesV1::LEAF_TUPLE_SIZE;
|
||||
const auto &trimmed_child = Selene::Chunk{grow_children.data() + trim_offset, CurveTreesV1::LEAF_TUPLE_SIZE};
|
||||
const auto trim_result = curve_trees.m_c2.hash_trim(
|
||||
init_grow_result,
|
||||
trim_offset,
|
||||
trimmed_child);
|
||||
const auto trim_res_bytes = curve_trees.m_c2.to_bytes(trim_result);
|
||||
// Trim selene_scalar_1
|
||||
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 1};
|
||||
const auto trim_res = curve_trees.m_c2.hash_trim(
|
||||
init_hash,
|
||||
1,
|
||||
trimmed_children,
|
||||
curve_trees.m_c2.zero_scalar());
|
||||
const auto trim_res_bytes = curve_trees.m_c2.to_bytes(trim_res);
|
||||
|
||||
// Now compare to calling hash_grow with the remaining children, excluding the trimmed child
|
||||
const auto &remaining_children = Selene::Chunk{grow_children.data(), trim_offset};
|
||||
const auto remaining_children_hash = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*first_child_after_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ remaining_children);
|
||||
const auto grow_res_bytes = curve_trees.m_c2.to_bytes(remaining_children_hash);
|
||||
// Now compare to calling hash_grow{selene_scalar_0}
|
||||
std::vector<Selene::Scalar> remaining_children{selene_scalar_0};
|
||||
const auto grow_res = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
||||
const auto grow_res_bytes = curve_trees.m_c2.to_bytes(grow_res);
|
||||
|
||||
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
||||
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
||||
}
|
||||
|
||||
// Helios
|
||||
// Get 2 helios scalars
|
||||
std::vector<Helios::Scalar> grow_helios_scalars;
|
||||
fcmp::tower_cycle::extend_scalars_from_cycle_points<Selene, Helios>(curve_trees.m_c2,
|
||||
{init_grow_result, trim_result},
|
||||
grow_helios_scalars);
|
||||
const auto &grow_helios_chunk = Helios::Chunk{grow_helios_scalars.data(), grow_helios_scalars.size()};
|
||||
// 3. Trim 2
|
||||
{
|
||||
// Start by hashing: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
|
||||
// Then trim to: {selene_scalar_0}
|
||||
const auto selene_scalar_0 = generate_random_selene_scalar();
|
||||
const auto selene_scalar_1 = generate_random_selene_scalar();
|
||||
const auto selene_scalar_2 = generate_random_selene_scalar();
|
||||
|
||||
// Get the initial hash of the 2 helios scalars
|
||||
const auto helios_grow_result = curve_trees.m_c1.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c1.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*first_child_after_offset*/ curve_trees.m_c1.zero_scalar(),
|
||||
/*children*/ grow_helios_chunk);
|
||||
// Get the initial hash of the 3 selene scalars
|
||||
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1, selene_scalar_2};
|
||||
const auto init_hash = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
||||
|
||||
// Trim the initial result by 1 child
|
||||
const auto &trimmed_helios_child = Helios::Chunk{grow_helios_scalars.data() + 1, 1};
|
||||
const auto trim_helios_result = curve_trees.m_c1.hash_trim(
|
||||
helios_grow_result,
|
||||
1,
|
||||
trimmed_helios_child);
|
||||
const auto trim_helios_res_bytes = curve_trees.m_c1.to_bytes(trim_helios_result);
|
||||
// Trim the initial result by 2 children
|
||||
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 2};
|
||||
const auto trim_res = curve_trees.m_c2.hash_trim(
|
||||
init_hash,
|
||||
1,
|
||||
trimmed_children,
|
||||
curve_trees.m_c2.zero_scalar());
|
||||
const auto trim_res_bytes = curve_trees.m_c2.to_bytes(trim_res);
|
||||
|
||||
// Now compare to calling hash_grow with the remaining children, excluding the trimmed child
|
||||
const auto &remaining_helios_children = Helios::Chunk{grow_helios_scalars.data(), 1};
|
||||
const auto remaining_helios_children_hash = curve_trees.m_c1.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c1.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*first_child_after_offset*/ curve_trees.m_c1.zero_scalar(),
|
||||
/*children*/ remaining_helios_children);
|
||||
const auto grow_helios_res_bytes = curve_trees.m_c1.to_bytes(remaining_helios_children_hash);
|
||||
// Now compare to calling hash_grow{selene_scalar_0}
|
||||
std::vector<Selene::Scalar> remaining_children{selene_scalar_0};
|
||||
const auto grow_res = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
||||
const auto grow_res_bytes = curve_trees.m_c2.to_bytes(grow_res);
|
||||
|
||||
ASSERT_EQ(trim_helios_res_bytes, grow_helios_res_bytes);
|
||||
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
||||
}
|
||||
|
||||
// 3. Change 1
|
||||
{
|
||||
// Start by hashing: {selene_scalar_0, selene_scalar_1}
|
||||
// Then change to: {selene_scalar_0, selene_scalar_2}
|
||||
const auto selene_scalar_0 = generate_random_selene_scalar();
|
||||
const auto selene_scalar_1 = generate_random_selene_scalar();
|
||||
|
||||
// Get the initial hash of the 3 selene scalars
|
||||
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1};
|
||||
const auto init_hash = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
||||
|
||||
const auto selene_scalar_2 = generate_random_selene_scalar();
|
||||
|
||||
// Trim the 2nd child and grow with new child
|
||||
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 1};
|
||||
const auto trim_res = curve_trees.m_c2.hash_trim(
|
||||
init_hash,
|
||||
1,
|
||||
trimmed_children,
|
||||
selene_scalar_2);
|
||||
const auto trim_res_bytes = curve_trees.m_c2.to_bytes(trim_res);
|
||||
|
||||
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_2}
|
||||
std::vector<Selene::Scalar> remaining_children{selene_scalar_0, selene_scalar_2};
|
||||
const auto grow_res = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
||||
const auto grow_res_bytes = curve_trees.m_c2.to_bytes(grow_res);
|
||||
|
||||
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
||||
}
|
||||
|
||||
// 4. Trim 2 then grow by 1
|
||||
{
|
||||
// Start by hashing: {selene_scalar_0, selene_scalar_1, selene_scalar_2}
|
||||
// Then trim+grow to: {selene_scalar_0, selene_scalar_3}
|
||||
const auto selene_scalar_0 = generate_random_selene_scalar();
|
||||
const auto selene_scalar_1 = generate_random_selene_scalar();
|
||||
const auto selene_scalar_2 = generate_random_selene_scalar();
|
||||
|
||||
// Get the initial hash of the 3 selene scalars
|
||||
std::vector<Selene::Scalar> init_children{selene_scalar_0, selene_scalar_1, selene_scalar_2};
|
||||
const auto init_hash = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{init_children.data(), init_children.size()});
|
||||
|
||||
const auto selene_scalar_3 = generate_random_selene_scalar();
|
||||
|
||||
// Trim the initial result by 2 children+grow by 1
|
||||
const auto &trimmed_children = Selene::Chunk{init_children.data() + 1, 2};
|
||||
const auto trim_res = curve_trees.m_c2.hash_trim(
|
||||
init_hash,
|
||||
1,
|
||||
trimmed_children,
|
||||
selene_scalar_3);
|
||||
const auto trim_res_bytes = curve_trees.m_c2.to_bytes(trim_res);
|
||||
|
||||
// Now compare to calling hash_grow{selene_scalar_0, selene_scalar_3}
|
||||
std::vector<Selene::Scalar> remaining_children{selene_scalar_0, selene_scalar_3};
|
||||
const auto grow_res = curve_trees.m_c2.hash_grow(
|
||||
/*existing_hash*/ curve_trees.m_c2.m_hash_init_point,
|
||||
/*offset*/ 0,
|
||||
/*existing_child_at_offset*/ curve_trees.m_c2.zero_scalar(),
|
||||
/*children*/ Selene::Chunk{remaining_children.data(), remaining_children.size()});
|
||||
const auto grow_res_bytes = curve_trees.m_c2.to_bytes(grow_res);
|
||||
|
||||
ASSERT_EQ(trim_res_bytes, grow_res_bytes);
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user