monero/tests/unit_tests/curve_trees.cpp

680 lines
29 KiB
C++
Raw Normal View History

// Copyright (c) 2014, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "gtest/gtest.h"
#include "curve_trees.h"
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// CurveTreesUnitTest helpers
//----------------------------------------------------------------------------------------------------------------------
template<typename C>
static fcmp::curve_trees::LastChunkData<C> get_last_child_layer_chunk(const C &curve,
const std::size_t child_layer_size,
const std::size_t parent_layer_size,
const std::size_t chunk_width,
const typename C::Scalar &last_child,
const typename C::Point &last_parent)
{
CHECK_AND_ASSERT_THROW_MES(child_layer_size > 0, "empty child layer");
CHECK_AND_ASSERT_THROW_MES(parent_layer_size > 0, "empty parent layer");
const std::size_t child_offset = child_layer_size % chunk_width;
return fcmp::curve_trees::LastChunkData<C>{
.child_offset = child_offset,
.last_child = curve.clone(last_child),
.last_parent = curve.clone(last_parent),
.child_layer_size = child_layer_size,
.parent_layer_size = parent_layer_size
};
}
//----------------------------------------------------------------------------------------------------------------------
template<typename C_PARENT>
static bool validate_layer(const C_PARENT &c_parent,
const CurveTreesUnitTest::Layer<C_PARENT> &parents,
const std::vector<typename C_PARENT::Scalar> &child_scalars,
const std::size_t max_chunk_size)
{
// Hash chunk of children scalars, then see if the hash matches up to respective parent
std::size_t chunk_start_idx = 0;
for (std::size_t i = 0; i < parents.size(); ++i)
{
CHECK_AND_ASSERT_MES(child_scalars.size() > chunk_start_idx, false, "chunk start too high");
const std::size_t chunk_size = std::min(child_scalars.size() - chunk_start_idx, max_chunk_size);
CHECK_AND_ASSERT_MES(child_scalars.size() >= (chunk_start_idx + chunk_size), false, "chunk size too large");
const typename C_PARENT::Point &parent = parents[i];
const auto chunk_start = child_scalars.data() + chunk_start_idx;
const typename C_PARENT::Chunk chunk{chunk_start, chunk_size};
const typename C_PARENT::Point chunk_hash = fcmp::curve_trees::get_new_parent(c_parent, chunk);
const auto actual_bytes = c_parent.to_bytes(parent);
const auto expected_bytes = c_parent.to_bytes(chunk_hash);
CHECK_AND_ASSERT_MES(actual_bytes == expected_bytes, false, "unexpected hash");
chunk_start_idx += chunk_size;
}
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx == child_scalars.size(), "unexpected ending chunk start idx");
return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// CurveTreesUnitTest implementations
//----------------------------------------------------------------------------------------------------------------------
CurveTreesV1::LastChunks CurveTreesUnitTest::get_last_chunks(const CurveTreesUnitTest::Tree &tree)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
// We started with c2 and then alternated, so c2 is the same size or 1 higher than c1
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
"unexpected number of curve layers");
CurveTreesV1::LastChunks last_chunks;
if (c2_layers.empty())
return last_chunks;
auto &c1_last_chunks_out = last_chunks.c1_last_chunks;
auto &c2_last_chunks_out = last_chunks.c2_last_chunks;
c1_last_chunks_out.reserve(c1_layers.size());
c2_last_chunks_out.reserve(c2_layers.size());
// First push the last leaf chunk data into c2 chunks
auto last_leaf_chunk = get_last_child_layer_chunk<Selene>(m_curve_trees.m_c2,
/*child_layer_size */ leaves.size() * CurveTreesV1::LEAF_TUPLE_SIZE,
/*parent_layer_size*/ c2_layers[0].size(),
/*chunk_width */ m_curve_trees.m_leaf_layer_chunk_width,
/*last_child */ leaves.back().C_x,
/*last_parent */ c2_layers[0].back());
c2_last_chunks_out.push_back(std::move(last_leaf_chunk));
// If there are no c1 layers, we're done
if (c1_layers.empty())
return last_chunks;
// Next parents will be c1
bool parent_is_c1 = true;
// Then get last chunks up until the root
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
while (c1_last_chunks_out.size() < c1_layers.size() || c2_last_chunks_out.size() < c2_layers.size())
{
CHECK_AND_ASSERT_THROW_MES(c1_layers.size() > c1_idx, "missing c1 layer");
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() > c2_idx, "missing c2 layer");
// TODO: template the below if statement into another function
if (parent_is_c1)
{
const Layer<Selene> &child_layer = c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<Helios> &parent_layer = c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
const auto &last_child = m_curve_trees.m_c2.point_to_cycle_scalar(child_layer.back());
auto last_parent_chunk = get_last_child_layer_chunk<Helios>(m_curve_trees.m_c1,
child_layer.size(),
parent_layer.size(),
m_curve_trees.m_c1_width,
last_child,
parent_layer.back());
c1_last_chunks_out.push_back(std::move(last_parent_chunk));
++c2_idx;
}
else
{
const Layer<Helios> &child_layer = c1_layers[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<Selene> &parent_layer = c2_layers[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
const auto &last_child = m_curve_trees.m_c1.point_to_cycle_scalar(child_layer.back());
auto last_parent_chunk = get_last_child_layer_chunk<Selene>(m_curve_trees.m_c2,
child_layer.size(),
parent_layer.size(),
m_curve_trees.m_c2_width,
last_child,
parent_layer.back());
c2_last_chunks_out.push_back(std::move(last_parent_chunk));
++c1_idx;
}
// Alternate curves every iteration
parent_is_c1 = !parent_is_c1;
}
CHECK_AND_ASSERT_THROW_MES(c1_last_chunks_out.size() == c1_layers.size(), "unexpected c1 last chunks");
CHECK_AND_ASSERT_THROW_MES(c2_last_chunks_out.size() == c2_layers.size(), "unexpected c2 last chunks");
return last_chunks;
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesUnitTest::extend_tree(const CurveTreesV1::TreeExtension &tree_extension,
CurveTreesUnitTest::Tree &tree_inout)
{
// Add the leaves
const std::size_t init_num_leaves = tree_inout.leaves.size() * m_curve_trees.LEAF_TUPLE_SIZE;
CHECK_AND_ASSERT_THROW_MES(init_num_leaves == tree_extension.leaves.start_idx,
"unexpected leaf start idx");
tree_inout.leaves.reserve(tree_inout.leaves.size() + tree_extension.leaves.tuples.size());
for (const auto &leaf : tree_extension.leaves.tuples)
{
tree_inout.leaves.emplace_back(CurveTreesV1::LeafTuple{
.O_x = m_curve_trees.m_c2.clone(leaf.O_x),
.I_x = m_curve_trees.m_c2.clone(leaf.I_x),
.C_x = m_curve_trees.m_c2.clone(leaf.C_x)
});
}
// Add the layers
const auto &c2_extensions = tree_extension.c2_layer_extensions;
const auto &c1_extensions = tree_extension.c1_layer_extensions;
CHECK_AND_ASSERT_THROW_MES(!c2_extensions.empty(), "empty c2 extensions");
bool use_c2 = true;
std::size_t c2_idx = 0;
std::size_t c1_idx = 0;
for (std::size_t i = 0; i < (c2_extensions.size() + c1_extensions.size()); ++i)
{
// TODO: template below if statement
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer extension");
const fcmp::curve_trees::LayerExtension<Selene> &c2_ext = c2_extensions[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!c2_ext.hashes.empty(), "empty c2 layer extension");
CHECK_AND_ASSERT_THROW_MES(c2_idx <= tree_inout.c2_layers.size(), "missing c2 layer");
if (tree_inout.c2_layers.size() == c2_idx)
tree_inout.c2_layers.emplace_back(Layer<Selene>{});
auto &c2_inout = tree_inout.c2_layers[c2_idx];
const bool started_after_tip = (c2_inout.size() == c2_ext.start_idx);
const bool started_at_tip = (c2_inout.size() == (c2_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c2 layer start");
// We updated the last hash
if (started_at_tip)
c2_inout.back() = m_curve_trees.m_c2.clone(c2_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c2_ext.hashes.size(); ++i)
c2_inout.emplace_back(m_curve_trees.m_c2.clone(c2_ext.hashes[i]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer extension");
const fcmp::curve_trees::LayerExtension<Helios> &c1_ext = c1_extensions[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!c1_ext.hashes.empty(), "empty c1 layer extension");
CHECK_AND_ASSERT_THROW_MES(c1_idx <= tree_inout.c1_layers.size(), "missing c1 layer");
if (tree_inout.c1_layers.size() == c1_idx)
tree_inout.c1_layers.emplace_back(Layer<Helios>{});
auto &c1_inout = tree_inout.c1_layers[c1_idx];
const bool started_after_tip = (c1_inout.size() == c1_ext.start_idx);
const bool started_at_tip = (c1_inout.size() == (c1_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c1 layer start");
// We updated the last hash
if (started_at_tip)
c1_inout.back() = m_curve_trees.m_c1.clone(c1_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c1_ext.hashes.size(); ++i)
c1_inout.emplace_back(m_curve_trees.m_c1.clone(c1_ext.hashes[i]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
bool CurveTreesUnitTest::validate_tree(const CurveTreesUnitTest::Tree &tree)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
CHECK_AND_ASSERT_MES(!leaves.empty(), false, "must have at least 1 leaf in tree");
CHECK_AND_ASSERT_MES(!c2_layers.empty(), false, "must have at least 1 c2 layer in tree");
CHECK_AND_ASSERT_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
false, "unexpected mismatch of c2 and c1 layers");
// Verify root has 1 member in it
const bool c2_is_root = c2_layers.size() > c1_layers.size();
CHECK_AND_ASSERT_MES(c2_is_root ? c2_layers.back().size() == 1 : c1_layers.back().size() == 1, false,
"root must have 1 member in it");
// Iterate from root down to layer above leaves, and check hashes match up correctly
bool parent_is_c2 = c2_is_root;
std::size_t c2_idx = c2_layers.size() - 1;
std::size_t c1_idx = c1_layers.empty() ? 0 : (c1_layers.size() - 1);
for (std::size_t i = 1; i < (c2_layers.size() + c1_layers.size()); ++i)
{
// TODO: implement templated function for below if statement
if (parent_is_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
const Layer<Selene> &parents = c2_layers[c2_idx];
const Layer<Helios> &children = c1_layers[c1_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c2_idx " + std::to_string(c2_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c1_idx " + std::to_string(c1_idx));
std::vector<Selene::Scalar> child_scalars;
fcmp::tower_cycle::extend_scalars_from_cycle_points<Helios, Selene>(m_curve_trees.m_c1,
children,
child_scalars);
const bool valid = validate_layer<Selene>(m_curve_trees.m_c2,
parents,
child_scalars,
m_curve_trees.m_c2_width);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c2_idx " + std::to_string(c2_idx));
--c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
const Layer<Helios> &parents = c1_layers[c1_idx];
const Layer<Selene> &children = c2_layers[c2_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c1_idx " + std::to_string(c1_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c2_idx " + std::to_string(c2_idx));
std::vector<Helios::Scalar> child_scalars;
fcmp::tower_cycle::extend_scalars_from_cycle_points<Selene, Helios>(m_curve_trees.m_c2,
children,
child_scalars);
const bool valid = validate_layer<Helios>(
m_curve_trees.m_c1,
parents,
child_scalars,
m_curve_trees.m_c1_width);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c1_idx " + std::to_string(c1_idx));
--c1_idx;
}
parent_is_c2 = !parent_is_c2;
}
// Now validate leaves
return validate_layer<Selene>(m_curve_trees.m_c2,
c2_layers[0],
m_curve_trees.flatten_leaves(leaves),
m_curve_trees.m_leaf_layer_chunk_width);
}
//----------------------------------------------------------------------------------------------------------------------
// Logging helpers
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesUnitTest::log_last_chunks(const CurveTreesV1::LastChunks &last_chunks)
{
const auto &c1_last_chunks = last_chunks.c1_last_chunks;
const auto &c2_last_chunks = last_chunks.c2_last_chunks;
MDEBUG("Total of " << c1_last_chunks.size() << " Helios last chunks and "
<< c2_last_chunks.size() << " Selene last chunks");
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_last_chunks.size() + c2_last_chunks.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_chunks.size(), "unexpected c2 layer");
const fcmp::curve_trees::LastChunkData<Selene> &last_chunk = c2_last_chunks[c2_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << m_curve_trees.m_c2.to_string(last_chunk.last_child)
<< " , last_parent: " << m_curve_trees.m_c2.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_chunks.size(), "unexpected c1 layer");
const fcmp::curve_trees::LastChunkData<Helios> &last_chunk = c1_last_chunks[c1_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << m_curve_trees.m_c1.to_string(last_chunk.last_child)
<< " , last_parent: " << m_curve_trees.m_c1.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesUnitTest::log_tree_extension(const CurveTreesV1::TreeExtension &tree_extension)
{
const auto &c1_extensions = tree_extension.c1_layer_extensions;
const auto &c2_extensions = tree_extension.c2_layer_extensions;
MDEBUG("Tree extension has " << tree_extension.leaves.tuples.size() << " leaves, "
<< c1_extensions.size() << " helios layers, " << c2_extensions.size() << " selene layers");
MDEBUG("Leaf start idx: " << tree_extension.leaves.start_idx);
for (std::size_t i = 0; i < tree_extension.leaves.tuples.size(); ++i)
{
const auto &leaf = tree_extension.leaves.tuples[i];
const auto O_x = m_curve_trees.m_c2.to_string(leaf.O_x);
const auto I_x = m_curve_trees.m_c2.to_string(leaf.I_x);
const auto C_x = m_curve_trees.m_c2.to_string(leaf.C_x);
MDEBUG("Leaf idx " << ((i*CurveTreesV1::LEAF_TUPLE_SIZE) + tree_extension.leaves.start_idx)
2024-05-20 18:24:27 -04:00
<< " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_extensions.size() + c2_extensions.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer");
const fcmp::curve_trees::LayerExtension<Selene> &c2_layer = c2_extensions[c2_idx];
MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx);
for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j)
2024-05-20 18:24:27 -04:00
MDEBUG("Hash idx: " << (j + c2_layer.start_idx) << " , hash: "
<< m_curve_trees.m_c2.to_string(c2_layer.hashes[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer");
const fcmp::curve_trees::LayerExtension<Helios> &c1_layer = c1_extensions[c1_idx];
MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx);
for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j)
2024-05-20 18:24:27 -04:00
MDEBUG("Hash idx: " << (j + c1_layer.start_idx) << " , hash: "
<< m_curve_trees.m_c1.to_string(c1_layer.hashes[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
void CurveTreesUnitTest::log_tree(const CurveTreesUnitTest::Tree &tree)
{
LOG_PRINT_L1("Tree has " << tree.leaves.size() << " leaves, "
<< tree.c1_layers.size() << " helios layers, " << tree.c2_layers.size() << " selene layers");
for (std::size_t i = 0; i < tree.leaves.size(); ++i)
{
const auto &leaf = tree.leaves[i];
const auto O_x = m_curve_trees.m_c2.to_string(leaf.O_x);
const auto I_x = m_curve_trees.m_c2.to_string(leaf.I_x);
const auto C_x = m_curve_trees.m_c2.to_string(leaf.C_x);
MDEBUG("Leaf idx " << i << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (tree.c1_layers.size() + tree.c2_layers.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < tree.c2_layers.size(), "unexpected c2 layer");
const CurveTreesUnitTest::Layer<Selene> &c2_layer = tree.c2_layers[c2_idx];
MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c2_layer.size(); ++j)
MDEBUG("Hash idx: " << j << " , hash: " << m_curve_trees.m_c2.to_string(c2_layer[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < tree.c1_layers.size(), "unexpected c1 layer");
const CurveTreesUnitTest::Layer<Helios> &c1_layer = tree.c1_layers[c1_idx];
MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c1_layer.size(); ++j)
MDEBUG("Hash idx: " << j << " , hash: " << m_curve_trees.m_c1.to_string(c1_layer[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// Test helpers
//----------------------------------------------------------------------------------------------------------------------
static const std::vector<CurveTreesV1::LeafTuple> generate_random_leaves(const CurveTreesV1 &curve_trees,
const std::size_t num_leaves)
{
std::vector<CurveTreesV1::LeafTuple> tuples;
tuples.reserve(num_leaves);
for (std::size_t i = 0; i < num_leaves; ++i)
{
// Generate random output tuple
crypto::secret_key o,c;
crypto::public_key O,C;
crypto::generate_keys(O, o, o, false);
crypto::generate_keys(C, c, c, false);
auto leaf_tuple = curve_trees.output_to_leaf_tuple(O, C);
tuples.emplace_back(std::move(leaf_tuple));
}
return tuples;
}
//----------------------------------------------------------------------------------------------------------------------
static void grow_tree(CurveTreesV1 &curve_trees,
CurveTreesUnitTest &curve_trees_accessor,
const std::size_t num_leaves,
CurveTreesUnitTest::Tree &tree_inout)
{
// Get the last chunk from each layer in the tree; empty if tree is empty
const auto last_chunks = curve_trees_accessor.get_last_chunks(tree_inout);
curve_trees_accessor.log_last_chunks(last_chunks);
// Get a tree extension object to the existing tree using randomly generated leaves
// - The tree extension includes all elements we'll need to add to the existing tree when adding the new leaves
const auto tree_extension = curve_trees.get_tree_extension(last_chunks,
generate_random_leaves(curve_trees, num_leaves));
curve_trees_accessor.log_tree_extension(tree_extension);
// Use the tree extension to extend the existing tree
curve_trees_accessor.extend_tree(tree_extension, tree_inout);
curve_trees_accessor.log_tree(tree_inout);
// Validate tree structure and all hashes
ASSERT_TRUE(curve_trees_accessor.validate_tree(tree_inout));
}
//----------------------------------------------------------------------------------------------------------------------
static void grow_tree_test(Helios &helios,
Selene &selene,
const std::size_t helios_width,
const std::size_t selene_width)
{
LOG_PRINT_L1("Test grow tree with helios chunk width " << helios_width << ", selene chunk width " << selene_width);
auto curve_trees = CurveTreesV1(
helios,
selene,
helios_width,
selene_width);
CurveTreesUnitTest curve_trees_accessor{curve_trees};
CHECK_AND_ASSERT_THROW_MES(helios_width > 1, "helios width must be > 1");
CHECK_AND_ASSERT_THROW_MES(selene_width > 1, "selene width must be > 1");
// Number of leaves for which x number of layers is required
const std::size_t NEED_1_LAYER = selene_width;
const std::size_t NEED_2_LAYERS = NEED_1_LAYER * helios_width;
const std::size_t NEED_3_LAYERS = NEED_2_LAYERS * selene_width;
const std::vector<std::size_t> N_LEAVES{
// Basic tests
1,
2,
// Test with number of leaves {-1,0,+1} relative to chunk width boundaries
NEED_1_LAYER-1,
NEED_1_LAYER,
NEED_1_LAYER+1,
NEED_2_LAYERS-1,
NEED_2_LAYERS,
NEED_2_LAYERS+1,
NEED_3_LAYERS,
};
2024-05-20 18:24:27 -04:00
for (const std::size_t init_leaves : N_LEAVES)
{
2024-05-20 18:24:27 -04:00
for (const std::size_t ext_leaves : N_LEAVES)
{
// Tested reverse order already
if (ext_leaves < init_leaves)
continue;
// Only test 3rd layer once because it's a huge test
if (init_leaves > 1 && ext_leaves == NEED_3_LAYERS)
continue;
LOG_PRINT_L1("Adding " << init_leaves << " leaves to tree, then extending by " << ext_leaves << " leaves");
CurveTreesUnitTest::Tree global_tree;
// Initialize global tree with `init_leaves`
MDEBUG("Adding " << init_leaves << " leaves to tree");
grow_tree(curve_trees,
curve_trees_accessor,
init_leaves,
global_tree);
MDEBUG("Successfully added initial " << init_leaves << " leaves to tree");
// Then extend the global tree by `ext_leaves`
MDEBUG("Extending tree by " << ext_leaves << " leaves");
grow_tree(curve_trees,
curve_trees_accessor,
ext_leaves,
global_tree);
MDEBUG("Successfully extended by " << ext_leaves << " leaves");
}
}
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
// Test
//----------------------------------------------------------------------------------------------------------------------
TEST(curve_trees, grow_tree)
{
// TODO: use static constant generators and hash init points
const std::size_t HELIOS_GENERATORS_LEN = 128;
const std::size_t SELENE_GENERATORS_LEN = 256;
// https://github.com/kayabaNerve/fcmp-plus-plus/blob
// /b2742e86f3d18155fd34dd1ed69cb8f79b900fce/crypto/fcmps/src/tests.rs#L81-L82
const std::size_t HELIOS_CHUNK_WIDTH = 38;
const std::size_t SELENE_CHUNK_WIDTH = 18;
CHECK_AND_ASSERT_THROW_MES(HELIOS_GENERATORS_LEN >= HELIOS_CHUNK_WIDTH, "helios generators < chunk width");
CHECK_AND_ASSERT_THROW_MES(SELENE_GENERATORS_LEN >= (SELENE_CHUNK_WIDTH * CurveTreesV1::LEAF_TUPLE_SIZE),
"selene generators < max chunk width");
const Helios::Generators HELIOS_GENERATORS = fcmp::tower_cycle::random_helios_generators(HELIOS_GENERATORS_LEN);
const Selene::Generators SELENE_GENERATORS = fcmp::tower_cycle::random_selene_generators(SELENE_GENERATORS_LEN);
const Helios::Point HELIOS_HASH_INIT_POINT = fcmp::tower_cycle::random_helios_hash_init_point();
const Selene::Point SELENE_HASH_INIT_POINT = fcmp::tower_cycle::random_selene_hash_init_point();
Helios helios(HELIOS_GENERATORS, HELIOS_HASH_INIT_POINT);
Selene selene(SELENE_GENERATORS, SELENE_HASH_INIT_POINT);
grow_tree_test(helios, selene, HELIOS_CHUNK_WIDTH, SELENE_CHUNK_WIDTH);
}