rough fcmp++ tree impl (lots of work remaining to clean it up and fix)

This commit is contained in:
j-berman 2024-05-17 00:21:47 -07:00
parent caa62bc9ea
commit e1c03f4d5a
16 changed files with 1730 additions and 1 deletions

2
.gitignore vendored

@ -120,3 +120,5 @@ nbproject
__pycache__/
*.pyc
*.log
Cargo.lock

3
.gitmodules vendored

@ -14,3 +14,6 @@
path = external/supercop
url = https://github.com/monero-project/supercop
branch = monero
[submodule "external/fcmp-plus-plus"]
path = external/fcmp-plus-plus
url = https://github.com/kayabaNerve/fcmp-plus-plus.git

@ -89,6 +89,7 @@ add_subdirectory(ringct)
add_subdirectory(checkpoints)
add_subdirectory(cryptonote_basic)
add_subdirectory(cryptonote_core)
add_subdirectory(fcmp)
add_subdirectory(lmdb)
add_subdirectory(multisig)
add_subdirectory(net)

@ -199,6 +199,9 @@ namespace
*
* spent_keys input hash -
*
* leaves leaf_idx {O.x, I.x, C.x}
* branches layer_idx [{branch_idx, branch_hash}...]
*
* txpool_meta txn hash txn metadata
* txpool_blob txn hash txn blob
*
@ -210,7 +213,7 @@ namespace
* attached as a prefix on the Data to serve as the DUPSORT key.
* (DUPFIXED saves 8 bytes per record.)
*
* The output_amounts table doesn't use a dummy key, but uses DUPSORT.
* The output_amounts and branches tables don't use a dummy key, but use DUPSORT
*/
const char* const LMDB_BLOCKS = "blocks";
const char* const LMDB_BLOCK_HEIGHTS = "block_heights";
@ -228,6 +231,10 @@ const char* const LMDB_OUTPUT_TXS = "output_txs";
const char* const LMDB_OUTPUT_AMOUNTS = "output_amounts";
const char* const LMDB_SPENT_KEYS = "spent_keys";
// Curve trees tree types
const char* const LMDB_LEAVES = "leaves";
const char* const LMDB_BRANCHES = "branches";
const char* const LMDB_TXPOOL_META = "txpool_meta";
const char* const LMDB_TXPOOL_BLOB = "txpool_blob";
@ -1437,6 +1444,9 @@ void BlockchainLMDB::open(const std::string& filename, const int db_flags)
lmdb_db_open(txn, LMDB_SPENT_KEYS, MDB_INTEGERKEY | MDB_CREATE | MDB_DUPSORT | MDB_DUPFIXED, m_spent_keys, "Failed to open db handle for m_spent_keys");
lmdb_db_open(txn, LMDB_LEAVES, MDB_INTEGERKEY | MDB_DUPSORT | MDB_DUPFIXED | MDB_CREATE, m_leaves, "Failed to open db handle for m_leaves");
lmdb_db_open(txn, LMDB_BRANCHES, MDB_INTEGERKEY | MDB_DUPSORT | MDB_DUPFIXED | MDB_CREATE, m_branches, "Failed to open db handle for m_branches");
lmdb_db_open(txn, LMDB_TXPOOL_META, MDB_CREATE, m_txpool_meta, "Failed to open db handle for m_txpool_meta");
lmdb_db_open(txn, LMDB_TXPOOL_BLOB, MDB_CREATE, m_txpool_blob, "Failed to open db handle for m_txpool_blob");
@ -1456,6 +1466,8 @@ void BlockchainLMDB::open(const std::string& filename, const int db_flags)
mdb_set_dupsort(txn, m_block_heights, compare_hash32);
mdb_set_dupsort(txn, m_tx_indices, compare_hash32);
mdb_set_dupsort(txn, m_output_amounts, compare_uint64);
mdb_set_dupsort(txn, m_leaves, compare_uint64);
mdb_set_dupsort(txn, m_branches, compare_uint64);
mdb_set_dupsort(txn, m_output_txs, compare_uint64);
mdb_set_dupsort(txn, m_block_info, compare_uint64);
if (!(mdb_flags & MDB_RDONLY))
@ -1633,6 +1645,10 @@ void BlockchainLMDB::reset()
throw0(DB_ERROR(lmdb_error("Failed to drop m_output_amounts: ", result).c_str()));
if (auto result = mdb_drop(txn, m_spent_keys, 0))
throw0(DB_ERROR(lmdb_error("Failed to drop m_spent_keys: ", result).c_str()));
if (auto result = mdb_drop(txn, m_leaves, 0))
throw0(DB_ERROR(lmdb_error("Failed to drop m_leaves: ", result).c_str()));
if (auto result = mdb_drop(txn, m_branches, 0))
throw0(DB_ERROR(lmdb_error("Failed to drop m_branches: ", result).c_str()));
(void)mdb_drop(txn, m_hf_starting_heights, 0); // this one is dropped in new code
if (auto result = mdb_drop(txn, m_hf_versions, 0))
throw0(DB_ERROR(lmdb_error("Failed to drop m_hf_versions: ", result).c_str()));

@ -64,6 +64,9 @@ typedef struct mdb_txn_cursors
MDB_cursor *m_txc_spent_keys;
MDB_cursor *m_txc_leaves;
MDB_cursor *m_txc_branches;
MDB_cursor *m_txc_txpool_meta;
MDB_cursor *m_txc_txpool_blob;
@ -87,6 +90,8 @@ typedef struct mdb_txn_cursors
#define m_cur_tx_indices m_cursors->m_txc_tx_indices
#define m_cur_tx_outputs m_cursors->m_txc_tx_outputs
#define m_cur_spent_keys m_cursors->m_txc_spent_keys
#define m_cur_leaves m_cursors->m_txc_leaves
#define m_cur_branches m_cursors->m_txc_branches
#define m_cur_txpool_meta m_cursors->m_txc_txpool_meta
#define m_cur_txpool_blob m_cursors->m_txc_txpool_blob
#define m_cur_alt_blocks m_cursors->m_txc_alt_blocks
@ -109,6 +114,8 @@ typedef struct mdb_rflags
bool m_rf_tx_indices;
bool m_rf_tx_outputs;
bool m_rf_spent_keys;
bool m_rf_leaves;
bool m_rf_branches;
bool m_rf_txpool_meta;
bool m_rf_txpool_blob;
bool m_rf_alt_blocks;
@ -463,6 +470,9 @@ private:
MDB_dbi m_spent_keys;
MDB_dbi m_leaves;
MDB_dbi m_branches;
MDB_dbi m_txpool_meta;
MDB_dbi m_txpool_blob;

@ -618,6 +618,12 @@ namespace crypto {
ge_p1p1_to_p3(&res, &point2);
}
void crypto_ops::derive_key_image_generator(const public_key &pub, ec_point &ki_gen) {
ge_p3 point;
hash_to_ec(pub, point);
ge_p3_tobytes(&ki_gen, &point);
}
void crypto_ops::generate_key_image(const public_key &pub, const secret_key &sec, key_image &image) {
ge_p3 point;
ge_p2 point2;

@ -145,6 +145,8 @@ namespace crypto {
friend void generate_tx_proof_v1(const hash &, const public_key &, const public_key &, const boost::optional<public_key> &, const public_key &, const secret_key &, signature &);
static bool check_tx_proof(const hash &, const public_key &, const public_key &, const boost::optional<public_key> &, const public_key &, const signature &, const int);
friend bool check_tx_proof(const hash &, const public_key &, const public_key &, const boost::optional<public_key> &, const public_key &, const signature &, const int);
static void derive_key_image_generator(const public_key &, ec_point &);
friend void derive_key_image_generator(const public_key &, ec_point &);
static void generate_key_image(const public_key &, const secret_key &, key_image &);
friend void generate_key_image(const public_key &, const secret_key &, key_image &);
static void generate_ring_signature(const hash &, const key_image &,
@ -268,6 +270,10 @@ namespace crypto {
return crypto_ops::check_tx_proof(prefix_hash, R, A, B, D, sig, version);
}
inline void derive_key_image_generator(const public_key &pub, ec_point &ki_gen) {
crypto_ops::derive_key_image_generator(pub, ki_gen);
}
/* To send money to a key:
* * The sender generates an ephemeral key and includes it in transaction output.
* * To spend the money, the receiver generates a key image from it.

49
src/fcmp/CMakeLists.txt Normal file

@ -0,0 +1,49 @@
# Copyright (c) 2024, The Monero Project
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are
# permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list
# of conditions and the following disclaimer in the documentation and/or other
# materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be
# used to endorse or promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
# THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
set(fcmp_sources
fcmp.cpp)
monero_find_all_headers(fcmp_headers "${CMAKE_CURRENT_SOURCE_DIR}")
add_subdirectory(fcmp_rust)
monero_add_library_with_deps(
NAME fcmp
DEPENDS rust_cxx
SOURCES
${fcmp_sources}
${fcmp_headers})
target_link_libraries(fcmp
PUBLIC
crypto
epee
PRIVATE
fcmp_rust
${EXTRA_LIBRARIES})

86
src/fcmp/fcmp.cpp Normal file

@ -0,0 +1,86 @@
// Copyright (c) 2024, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "fcmp.h"
#include "misc_log_ex.h"
namespace fcmp
{
// TODO: move into its own fcmp_crypto file
static SeleneScalar ed_25519_point_to_selene_scalar(const crypto::ec_point &point)
{
static_assert(sizeof(fcmp::RustEd25519Point) == sizeof(crypto::ec_point),
"expected same size ed25519 point to rust representation");
// TODO: implement reading just the x coordinate of ed25519 point in C/C++
fcmp::RustEd25519Point rust_point;
memcpy(&rust_point, &point, sizeof(fcmp::RustEd25519Point));
return fcmp_rust::ed25519_point_to_selene_scalar(rust_point);
};
// TODO: move into its own fcmp_crypto file
LeafTuple output_to_leaf_tuple(const crypto::public_key &O, const crypto::public_key &C)
{
crypto::ec_point I;
crypto::derive_key_image_generator(O, I);
return LeafTuple{
.O_x = ed_25519_point_to_selene_scalar(O),
.I_x = ed_25519_point_to_selene_scalar(I),
.C_x = ed_25519_point_to_selene_scalar(C)
};
}
// TODO: move into its own fcmp_crypto file
std::vector<SeleneScalar> flatten_leaves(const std::vector<LeafTuple> &leaves)
{
std::vector<SeleneScalar> flattened_leaves;
flattened_leaves.reserve(leaves.size() * LEAF_TUPLE_SIZE);
for (const auto &l : leaves)
{
// TODO: implement without cloning
flattened_leaves.emplace_back(fcmp_rust::clone_selene_scalar(l.O_x));
flattened_leaves.emplace_back(fcmp_rust::clone_selene_scalar(l.I_x));
flattened_leaves.emplace_back(fcmp_rust::clone_selene_scalar(l.C_x));
}
return flattened_leaves;
};
SeleneScalar Helios::point_to_cycle_scalar(const Helios::Point &point) const
{
return fcmp_rust::helios_point_to_selene_scalar(point);
};
HeliosScalar Selene::point_to_cycle_scalar(const Selene::Point &point) const
{
return fcmp_rust::selene_point_to_helios_scalar(point);
};
} //namespace fcmp

921
src/fcmp/fcmp.h Normal file

@ -0,0 +1,921 @@
// Copyright (c) 2024, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include "crypto/crypto.h"
#include "fcmp_rust/cxx.h"
#include "fcmp_rust/fcmp_rust.h"
#include "misc_log_ex.h"
#include "string_tools.h"
#include <boost/variant.hpp>
#include <string>
namespace fcmp
{
using RustEd25519Point = std::array<uint8_t, 32UL>;
// Need to forward declare Scalar types for point_to_cycle_scalar below
using SeleneScalar = rust::Box<fcmp_rust::SeleneScalar>;
using HeliosScalar = rust::Box<fcmp_rust::HeliosScalar>;
static struct Helios final
{
using Generators = rust::Box<fcmp_rust::HeliosGenerators>;
using Scalar = HeliosScalar;
using Point = rust::Box<fcmp_rust::HeliosPoint>;
using Chunk = rust::Slice<const Scalar>;
// TODO: static constants
const Generators GENERATORS = fcmp_rust::random_helios_generators();
const Point HASH_INIT_POINT = fcmp_rust::random_helios_hash_init_point();
// TODO: use correct value
static const std::size_t WIDTH = 5;
Point hash_grow(
const Generators &generators,
const Point &existing_hash,
const std::size_t offset,
const Chunk &prior_children,
const Chunk &new_children) const
{
return fcmp_rust::hash_grow_helios(
generators,
existing_hash,
offset,
prior_children,
new_children);
}
SeleneScalar point_to_cycle_scalar(const Point &point) const;
Scalar clone(const Scalar &scalar) const { return fcmp_rust::clone_helios_scalar(scalar); }
Point clone(const Point &point) const { return fcmp_rust::clone_helios_point(point); }
Scalar zero_scalar() const { return fcmp_rust::helios_zero_scalar(); }
std::array<uint8_t, 32UL> to_bytes(const Scalar &scalar) const
{ return fcmp_rust::helios_scalar_to_bytes(scalar); }
std::array<uint8_t, 32UL> to_bytes(const Point &point) const
{ return fcmp_rust::helios_point_to_bytes(point); }
std::string to_string(const Scalar &scalar) const
{ return epee::string_tools::pod_to_hex(to_bytes(scalar)); }
std::string to_string(const Point &point) const
{ return epee::string_tools::pod_to_hex(to_bytes(point)); }
} HELIOS;
static struct Selene final
{
using Generators = rust::Box<fcmp_rust::SeleneGenerators>;
using Scalar = SeleneScalar;
using Point = rust::Box<fcmp_rust::SelenePoint>;
using Chunk = rust::Slice<const Scalar>;
// TODO: static constants
const Generators GENERATORS = fcmp_rust::random_selene_generators();
const Point HASH_INIT_POINT = fcmp_rust::random_selene_hash_init_point();
// TODO: use correct value
static const std::size_t WIDTH = 5;
Point hash_grow(
const Generators &generators,
const Point &existing_hash,
const std::size_t offset,
const Chunk &prior_children,
const Chunk &new_children) const
{
return fcmp_rust::hash_grow_selene(
generators,
existing_hash,
offset,
prior_children,
new_children);
};
HeliosScalar point_to_cycle_scalar(const Point &point) const;
Scalar clone(const Scalar &scalar) const { return fcmp_rust::clone_selene_scalar(scalar); }
Point clone(const Point &point) const { return fcmp_rust::clone_selene_point(point); }
Scalar zero_scalar() const { return fcmp_rust::selene_zero_scalar(); }
std::array<uint8_t, 32UL> to_bytes(const Scalar &scalar) const
{ return fcmp_rust::selene_scalar_to_bytes(scalar); }
std::array<uint8_t, 32UL> to_bytes(const Point &point) const
{ return fcmp_rust::selene_point_to_bytes(point); }
std::string to_string(const Scalar &scalar) const
{ return epee::string_tools::pod_to_hex(to_bytes(scalar)); }
std::string to_string(const Point &point) const
{ return epee::string_tools::pod_to_hex(to_bytes(point)); }
} SELENE;
// TODO: cleanly separate everything below into another file. This current file should strictly be for the rust interface
// TODO: template all the curve things
// TODO: Curve class
// TODO: CurveTree class instantiated with the curves and widths
// TODO: template
struct LeafTuple final
{
Selene::Scalar O_x;
Selene::Scalar I_x;
Selene::Scalar C_x;
};
static const std::size_t LEAF_TUPLE_SIZE = 3;
static const std::size_t LEAF_LAYER_CHUNK_SIZE = LEAF_TUPLE_SIZE * SELENE.WIDTH;
// Tree structure
struct Leaves final
{
// Starting index in the leaf layer
std::size_t start_idx;
// Contiguous leaves in a tree that start at the start_idx
std::vector<LeafTuple> tuples;
};
// A layer of contiguous hashes starting from a specific start_idx in the tree
template<typename C>
struct LayerExtension final
{
std::size_t start_idx;
std::vector<typename C::Point> hashes;
};
// A struct useful to extend an existing tree, layers alternate between C1 and C2
template<typename C1, typename C2>
struct TreeExtension final
{
Leaves leaves;
std::vector<LayerExtension<C1>> c1_layer_extensions;
std::vector<LayerExtension<C2>> c2_layer_extensions;
};
// Useful data from the last chunk in a layer
template<typename C>
struct LastChunkData final
{
// The total number of children % child layer chunk size
/*TODO: const*/ std::size_t child_offset;
// The last child in the chunk (and therefore the last child in the child layer)
/*TODO: const*/ typename C::Scalar last_child;
// The hash of the last chunk of child scalars
/*TODO: const*/ typename C::Point last_parent;
// Total number of children in the child layer
/*TODO: const*/ std::size_t child_layer_size;
// Total number of hashes in the parent layer
/*TODO: const*/ std::size_t parent_layer_size;
};
template<typename C1, typename C2>
struct LastChunks final
{
std::vector<LastChunkData<C1>> c1_last_chunks;
std::vector<LastChunkData<C2>> c2_last_chunks;
};
template<typename C>
using Layer = std::vector<typename C::Point>;
// A complete tree, useful for testing (can't fit the whole tree in memory otherwise)
// TODO: move this to just the testing
template<typename C1, typename C2>
struct Tree final
{
std::vector<LeafTuple> leaves;
std::vector<Layer<C1>> c1_layers;
std::vector<Layer<C2>> c2_layers;
};
LeafTuple output_to_leaf_tuple(const crypto::public_key &O, const crypto::public_key &C);
std::vector<Selene::Scalar> flatten_leaves(const std::vector<LeafTuple> &leaves);
// TODO: move into its own fcmp_crypto file
template <typename C_POINTS, typename C_SCALARS>
static void extend_scalars_from_cycle_points(const C_POINTS &curve,
const std::vector<typename C_POINTS::Point> &points,
std::vector<typename C_SCALARS::Scalar> &scalars_out)
{
scalars_out.reserve(scalars_out.size() + points.size());
for (const auto &point : points)
{
// TODO: implement reading just the x coordinate of points on curves in curve cycle in C/C++
typename C_SCALARS::Scalar scalar = curve.point_to_cycle_scalar(point);
scalars_out.push_back(std::move(scalar));
}
}
template<typename C2>
LastChunkData<C2> get_last_leaf_chunk(const C2 &c2,
const std::vector<LeafTuple> &leaves,
const std::vector<typename C2::Point> &parent_layer)
{
CHECK_AND_ASSERT_THROW_MES(!leaves.empty(), "empty leaf layer");
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "empty leaf parent layer");
const std::size_t child_offset = (leaves.size() * LEAF_TUPLE_SIZE) % LEAF_LAYER_CHUNK_SIZE;
const typename C2::Scalar &last_child = leaves.back().C_x;
const typename C2::Point &last_parent = parent_layer.back();
return LastChunkData<C2>{
.child_offset = child_offset,
.last_child = c2.clone(last_child),
.last_parent = c2.clone(last_parent),
.child_layer_size = leaves.size() * LEAF_TUPLE_SIZE,
.parent_layer_size = parent_layer.size()
};
}
template<typename C_CHILD, typename C_PARENT>
LastChunkData<C_PARENT> get_last_child_layer_chunk(const C_CHILD &c_child,
const C_PARENT &c_parent,
const std::vector<typename C_CHILD::Point> &child_layer,
const std::vector<typename C_PARENT::Point> &parent_layer)
{
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "empty child layer");
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "empty parent layer");
const std::size_t child_offset = child_layer.size() % c_parent.WIDTH;
const typename C_CHILD::Point &last_child_point = child_layer.back();
const typename C_PARENT::Scalar &last_child = c_child.point_to_cycle_scalar(last_child_point);
const typename C_PARENT::Point &last_parent = parent_layer.back();
return LastChunkData<C_PARENT>{
.child_offset = child_offset,
.last_child = c_parent.clone(last_child),
.last_parent = c_parent.clone(last_parent),
.child_layer_size = child_layer.size(),
.parent_layer_size = parent_layer.size()
};
}
// TODO: implement in the db, never want the entire tree in memory
template<typename C1, typename C2>
LastChunks<C1, C2> get_last_chunks(const C1 &c1,
const C2 &c2,
const Tree<C1, C2> &tree)
{
// const bool valid = validate_tree<C1, C2>(tree, C1, C2);
// CHECK_AND_ASSERT_THROW_MES(valid, "invalid tree");
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
LastChunks<C1, C2> last_chunks;
last_chunks.c1_last_chunks.reserve(c1_layers.size());
last_chunks.c2_last_chunks.reserve(c2_layers.size());
// First push the last leaf chunk data into c2 chunks
CHECK_AND_ASSERT_THROW_MES(!c2_layers.empty(), "empty curve 2 layers");
auto last_leaf_chunk = get_last_leaf_chunk<C2>(c2,
leaves,
c2_layers[0]);
last_chunks.c2_last_chunks.push_back(std::move(last_leaf_chunk));
// Next parents will be c1
bool parent_is_c1 = true;
// Since we started with c2, the number of c2 layers should be == c1_layers.size() || (c1_layers.size() + 1)
const std::size_t num_layers = c2_layers.size();
CHECK_AND_ASSERT_THROW_MES(num_layers == c1_layers.size() || num_layers == (c1_layers.size() + 1),
"unexpected number of curve layers");
// If there are no c1 layers, we're done
if (c1_layers.empty())
return last_chunks;
// Then get last chunks up until the root
for (std::size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx)
{
CHECK_AND_ASSERT_THROW_MES(c1_layers.size() > layer_idx, "missing c1 layer");
CHECK_AND_ASSERT_THROW_MES(c2_layers.size() > layer_idx, "missing c2 layer");
// TODO: template the below if statement into another function
if (parent_is_c1)
{
const Layer<C2> &child_layer = c2_layers[layer_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<C1> &parent_layer = c1_layers[layer_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
auto last_parent_chunk = get_last_child_layer_chunk<C2, C1>(c2,
c1,
child_layer,
parent_layer);
last_chunks.c1_last_chunks.push_back(std::move(last_parent_chunk));
}
else
{
const Layer<C1> &child_layer = c1_layers[layer_idx];
CHECK_AND_ASSERT_THROW_MES(!child_layer.empty(), "child layer is empty");
const Layer<C2> &parent_layer = c2_layers[layer_idx];
CHECK_AND_ASSERT_THROW_MES(!parent_layer.empty(), "parent layer is empty");
auto last_parent_chunk = get_last_child_layer_chunk<C1, C2>(c1,
c2,
child_layer,
parent_layer);
last_chunks.c2_last_chunks.push_back(std::move(last_parent_chunk));
}
// Alternate curves every iteration
parent_is_c1 = !parent_is_c1;
}
return last_chunks;
}
template <typename C>
static void extend_zeroes(const C &curve,
const std::size_t num_zeroes,
std::vector<typename C::Scalar> &zeroes_inout)
{
zeroes_inout.reserve(zeroes_inout.size() + num_zeroes);
for (std::size_t i = 0; i < num_zeroes; ++i)
zeroes_inout.emplace_back(curve.zero_scalar());
}
template <typename C>
static typename C::Point get_new_parent(const C &curve,
const typename C::Chunk &new_children)
{
// New parent means no prior children, fill priors with 0
std::vector<typename C::Scalar> prior_children;
extend_zeroes(curve, new_children.size(), prior_children);
return curve.hash_grow(
curve.GENERATORS,
curve.HASH_INIT_POINT,
0,/*offset*/
typename C::Chunk{prior_children.data(), prior_children.size()},
new_children
);
}
template <typename C>
static typename C::Point get_first_leaf_parent(const C &curve,
const typename C::Chunk &new_children,
const LastChunkData<C> *last_chunk_ptr)
{
// If no last chunk exists, or if the last chunk is already full, then we can get a new parent
if (last_chunk_ptr == nullptr || last_chunk_ptr->child_offset == 0)
return get_new_parent<C>(curve, new_children);
// There won't be any existing children when growing the leaf layer, fill priors with 0
std::vector<typename C::Scalar> prior_children;
extend_zeroes(curve, new_children.size(), prior_children);
return curve.hash_grow(
curve.GENERATORS,
last_chunk_ptr->last_parent,
last_chunk_ptr->child_offset,
typename C::Chunk{prior_children.data(), prior_children.size()},
new_children
);
}
template <typename C>
static typename C::Point get_first_non_leaf_parent(const C &curve,
const typename C::Chunk &new_children,
const bool child_layer_last_hash_updated,
const LastChunkData<C> *last_chunk_ptr)
{
// If no last chunk exists, we can get a new parent
if (last_chunk_ptr == nullptr)
return get_new_parent<C>(curve, new_children);
std::vector<typename C::Scalar> prior_children;
std::size_t offset = last_chunk_ptr->child_offset;
if (child_layer_last_hash_updated)
{
// If the last chunk has updated children in it, then we need to get the delta to the old children, and
// subtract the offset by 1 since we're updating the prior last hash
prior_children.emplace_back(curve.clone(last_chunk_ptr->last_child));
offset = offset > 0 ? (offset - 1) : (curve.WIDTH - 1);
// Extend prior children by zeroes for any additional new children, since they must be new
if (new_children.size() > 1)
extend_zeroes(curve, new_children.size() - 1, prior_children);
}
else if (offset > 0)
{
// If we're updating the parent hash and no children were updated, then we're just adding new children
// to the existing last chunk and can fill priors with 0
extend_zeroes(curve, new_children.size(), prior_children);
}
else
{
// If the last chunk is already full and isn't updated in any way, then we just get a new parent
return get_new_parent<C>(curve, new_children);
}
return curve.hash_grow(
curve.GENERATORS,
last_chunk_ptr->last_parent,
offset,
typename C::Chunk{prior_children.data(), prior_children.size()},
new_children
);
}
template<typename C_CHILD, typename C_PARENT>
void hash_layer(const C_CHILD &c_child,
const C_PARENT &c_parent,
const LastChunkData<C_CHILD> *last_child_chunk_ptr,
const LastChunkData<C_PARENT> *last_parent_chunk_ptr,
const LayerExtension<C_CHILD> &children,
LayerExtension<C_PARENT> &parents_out)
{
parents_out.start_idx = (last_parent_chunk_ptr == nullptr) ? 0 : last_parent_chunk_ptr->parent_layer_size;
parents_out.hashes.clear();
CHECK_AND_ASSERT_THROW_MES(!children.hashes.empty(), "empty children hashes");
const std::size_t max_chunk_size = c_parent.WIDTH;
std::size_t offset = (last_parent_chunk_ptr == nullptr) ? 0 : last_parent_chunk_ptr->child_offset;
// TODO: work through all edge cases, then try to simplify the approach to avoid them
// If we're adding new children to an existing last chunk, then we need to pull the parent start idx back 1
// since we'll be updating the existing parent hash of the last chunk
if (offset > 0)
{
CHECK_AND_ASSERT_THROW_MES(parents_out.start_idx > 0, "parent start idx should be > 0");
--parents_out.start_idx;
}
// If the child layer had its existing last hash updated, then we need to update the existing last parent
// hash in this layer as well
bool child_layer_last_hash_updated = (last_parent_chunk_ptr == nullptr)
? false
: last_parent_chunk_ptr->child_layer_size == (children.start_idx + 1);
if (offset == 0 && child_layer_last_hash_updated)
{
CHECK_AND_ASSERT_THROW_MES(parents_out.start_idx > 0, "parent start idx should be > 0");
--parents_out.start_idx;
}
// TODO: clean this up so I don't have to do it twice here and in get_first_non_leaf_parent
CHECK_AND_ASSERT_THROW_MES(max_chunk_size > offset, "unexpected offset");
if (child_layer_last_hash_updated)
offset = offset > 0 ? (offset - 1) : (max_chunk_size - 1);
// If we're creating a *new* root at the existing root layer, we may need to include the *existing* root when
// hashing the *existing* root layer
std::vector<typename C_PARENT::Scalar> child_scalars;
if (last_child_chunk_ptr != nullptr && last_child_chunk_ptr->parent_layer_size == 1)
{
MDEBUG("Here I have captured what I want to capture... children.start_idx: " << children.start_idx
<< " , children.hashes.size(): " << children.hashes.size() << " , max_chunk_size: " << max_chunk_size);
// We should be updating the existing root, there shouldn't be a last parent chunk
CHECK_AND_ASSERT_THROW_MES(last_parent_chunk_ptr == nullptr, "last parent chunk exists at root");
// If the children don't already include the existing root at start_idx 0 (they would if the existing
// root was updated in the child layer), then we need to add it to the first chunk to be hashed
if (children.start_idx > 0)
child_scalars.emplace_back(c_child.point_to_cycle_scalar(last_child_chunk_ptr->last_parent));
}
// Convert child points to scalars
extend_scalars_from_cycle_points<C_CHILD, C_PARENT>(c_child, children.hashes, child_scalars);
// See how many children we need to fill up the existing last chunk
std::size_t chunk_size = std::min(child_scalars.size(), max_chunk_size - offset);
MDEBUG("Starting chunk_size: " << chunk_size << " , child_scalars.size(): " << child_scalars.size() << " , offset: " << offset);
// Hash chunks of child scalars to create the parent hashes
std::size_t chunk_start_idx = 0;
while (chunk_start_idx < child_scalars.size())
{
const auto chunk_start = child_scalars.data() + chunk_start_idx;
const typename C_PARENT::Chunk chunk{chunk_start, chunk_size};
for (const auto &c : chunk)
MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " : " << c_parent.to_string(c));
// Hash the chunk of children
typename C_PARENT::Point chunk_hash = chunk_start_idx == 0
? get_first_non_leaf_parent<C_PARENT>(c_parent, chunk, child_layer_last_hash_updated, last_parent_chunk_ptr)
: get_new_parent<C_PARENT>(c_parent, chunk);
MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " result: " << c_parent.to_string(chunk_hash));
// We've got our hash
parents_out.hashes.emplace_back(std::move(chunk_hash));
// Advance to the next chunk
chunk_start_idx += chunk_size;
// Prepare for next loop if there should be one
if (chunk_start_idx == child_scalars.size())
break;
// Fill a complete chunk, or add the remaining new children to the last chunk
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx < child_scalars.size(), "unexpected chunk start idx");
chunk_size = std::min(max_chunk_size, child_scalars.size() - chunk_start_idx);
}
}
template<typename C2>
void hash_leaf_layer(const C2 &c2,
const LastChunkData<C2> *last_chunk_ptr,
const Leaves &leaves,
LayerExtension<C2> &parents_out)
{
parents_out.start_idx = (last_chunk_ptr == nullptr) ? 0 : last_chunk_ptr->parent_layer_size;
parents_out.hashes.clear();
if (leaves.tuples.empty())
return;
// Flatten leaves [(O.x, I.x, C.x),(O.x, I.x, C.x),...] -> [scalar, scalar, scalar, scalar, scalar, scalar,...]
const std::vector<typename C2::Scalar> children = fcmp::flatten_leaves(leaves.tuples);
const std::size_t max_chunk_size = LEAF_LAYER_CHUNK_SIZE;
const std::size_t offset = (last_chunk_ptr == nullptr) ? 0 : last_chunk_ptr->child_offset;
// If we're adding new children to an existing last chunk, then we need to pull the parent start idx back 1
// since we'll be updating the existing parent hash of the last chunk
if (offset > 0)
{
CHECK_AND_ASSERT_THROW_MES(parents_out.start_idx > 0, "parent start idx should be > 0");
--parents_out.start_idx;
}
// See how many new children are needed to fill up the existing last chunk
CHECK_AND_ASSERT_THROW_MES(max_chunk_size > offset, "unexpected offset");
std::size_t chunk_size = std::min(children.size(), max_chunk_size - offset);
std::size_t chunk_start_idx = 0;
while (chunk_start_idx < children.size())
{
const auto chunk_start = children.data() + chunk_start_idx;
const typename C2::Chunk chunk{chunk_start, chunk_size};
for (const auto &c : chunk)
MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " : " << c2.to_string(c));
// Hash the chunk of children
typename C2::Point chunk_hash = chunk_start_idx == 0
? get_first_leaf_parent<C2>(c2, chunk, last_chunk_ptr)
: get_new_parent<C2>(c2, chunk);
MDEBUG("Hash chunk_start_idx " << chunk_start_idx << " result: " << c2.to_string(chunk_hash) << " , chunk_size: " << chunk_size);
// We've got our hash
parents_out.hashes.emplace_back(std::move(chunk_hash));
// Advance to the next chunk
chunk_start_idx += chunk_size;
// Prepare for next loop if there should be one
if (chunk_start_idx == children.size())
break;
// Fill a complete chunk, or add the remaining new children to the last chunk
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx < children.size(), "unexpected chunk start idx");
chunk_size = std::min(max_chunk_size, children.size() - chunk_start_idx);
}
}
template<typename C1, typename C2>
TreeExtension<C1, C2> get_tree_extension(const LastChunks<C1, C2> &existing_last_chunks,
const Leaves &new_leaves,
const C1 &c1,
const C2 &c2)
{
TreeExtension<C1, C2> tree_extension;
if (new_leaves.tuples.empty())
return tree_extension;
const auto &c1_last_chunks = existing_last_chunks.c1_last_chunks;
const auto &c2_last_chunks = existing_last_chunks.c2_last_chunks;
// Set the leaf start idx
tree_extension.leaves.start_idx = c2_last_chunks.empty()
? 0
: c2_last_chunks[0].child_layer_size;
// Copy the leaves
// TODO: don't copy here
tree_extension.leaves.tuples.reserve(new_leaves.tuples.size());
for (const auto &leaf : new_leaves.tuples)
{
tree_extension.leaves.tuples.emplace_back(LeafTuple{
.O_x = SELENE.clone(leaf.O_x),
.I_x = SELENE.clone(leaf.I_x),
.C_x = SELENE.clone(leaf.C_x)
});
}
auto &c1_layer_extensions_out = tree_extension.c1_layer_extensions;
auto &c2_layer_extensions_out = tree_extension.c2_layer_extensions;
// Hash the leaf layer
LayerExtension<C2> parents;
hash_leaf_layer<C2>(c2,
c2_last_chunks.empty() ? nullptr : &c2_last_chunks[0],
new_leaves,
parents);
c2_layer_extensions_out.emplace_back(std::move(parents));
// Check if we just added the root
if (c2_layer_extensions_out.back().hashes.size() == 1 && c2_layer_extensions_out.back().start_idx == 0)
return tree_extension;
// Alternate between hashing c2 children, c1 children, c2, c1, ...
bool parent_is_c1 = true;
std::size_t c1_last_idx = 0;
std::size_t c2_last_idx = 0;
// TODO: calculate max number of layers it should take to add all leaves (existing leaves + new leaves)
while (true)
{
if (parent_is_c1)
{
CHECK_AND_ASSERT_THROW_MES(c2_layer_extensions_out.size() > c2_last_idx, "missing c2 layer");
LayerExtension<C1> c1_layer_extension;
fcmp::hash_layer<C2, C1>(c2,
c1,
(c2_last_chunks.size() <= c2_last_idx) ? nullptr : &c2_last_chunks[c2_last_idx],
(c1_last_chunks.size() <= c1_last_idx) ? nullptr : &c1_last_chunks[c1_last_idx],
c2_layer_extensions_out[c2_last_idx],
c1_layer_extension);
c1_layer_extensions_out.emplace_back(std::move(c1_layer_extension));
// Check if we just added the root
if (c1_layer_extensions_out.back().hashes.size() == 1 && c1_layer_extensions_out.back().start_idx == 0)
return tree_extension;
++c2_last_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_layer_extensions_out.size() > c1_last_idx, "missing c1 layer");
LayerExtension<C2> c2_layer_extension;
fcmp::hash_layer<C1, C2>(c1,
c2,
(c1_last_chunks.size() <= c1_last_idx) ? nullptr : &c1_last_chunks[c1_last_idx],
(c2_last_chunks.size() <= c2_last_idx) ? nullptr : &c2_last_chunks[c2_last_idx],
c1_layer_extensions_out[c1_last_idx],
c2_layer_extension);
c2_layer_extensions_out.emplace_back(std::move(c2_layer_extension));
// Check if we just added the root
if (c2_layer_extensions_out.back().hashes.size() == 1 && c2_layer_extensions_out.back().start_idx == 0)
return tree_extension;
++c1_last_idx;
}
parent_is_c1 = !parent_is_c1;
}
}
// TODO: this is only useful for testsing, can't fit entire tree in memory
template<typename C1, typename C2>
void extend_tree(const TreeExtension<C1, C2> &tree_extension,
const C1 &c1,
const C2 &c2,
Tree<C1, C2> &tree_inout)
{
// Add the leaves
CHECK_AND_ASSERT_THROW_MES((tree_inout.leaves.size() * LEAF_TUPLE_SIZE) == tree_extension.leaves.start_idx,
"unexpected leaf start idx");
tree_inout.leaves.reserve(tree_inout.leaves.size() + tree_extension.leaves.tuples.size());
for (const auto &leaf : tree_extension.leaves.tuples)
{
tree_inout.leaves.emplace_back(LeafTuple{
.O_x = c2.clone(leaf.O_x),
.I_x = c2.clone(leaf.I_x),
.C_x = c2.clone(leaf.C_x)
});
}
// Add the layers
const auto &c2_extensions = tree_extension.c2_layer_extensions;
const auto &c1_extensions = tree_extension.c1_layer_extensions;
CHECK_AND_ASSERT_THROW_MES(!c2_extensions.empty(), "empty c2 extensions");
bool use_c2 = true;
std::size_t c2_idx = 0;
std::size_t c1_idx = 0;
for (std::size_t i = 0; i < (c2_extensions.size() + c1_extensions.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer extension");
const LayerExtension<C2> &c2_ext = c2_extensions[c2_idx];
CHECK_AND_ASSERT_THROW_MES(!c2_ext.hashes.empty(), "empty c2 layer extension");
CHECK_AND_ASSERT_THROW_MES(c2_idx <= tree_inout.c2_layers.size(), "missing c2 layer");
if (tree_inout.c2_layers.size() == c2_idx)
tree_inout.c2_layers.emplace_back(Layer<C2>{});
auto &c2_inout = tree_inout.c2_layers[c2_idx];
const bool started_after_tip = (c2_inout.size() == c2_ext.start_idx);
const bool started_at_tip = (c2_inout.size() == (c2_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c2 layer start");
// We updated the last hash
if (started_at_tip)
c2_inout.back() = c2.clone(c2_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c2_ext.hashes.size(); ++i)
c2_inout.emplace_back(c2.clone(c2_ext.hashes[i]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer extension");
const fcmp::LayerExtension<C1> &c1_ext = c1_extensions[c1_idx];
CHECK_AND_ASSERT_THROW_MES(!c1_ext.hashes.empty(), "empty c1 layer extension");
CHECK_AND_ASSERT_THROW_MES(c1_idx <= tree_inout.c1_layers.size(), "missing c1 layer");
if (tree_inout.c1_layers.size() == c1_idx)
tree_inout.c1_layers.emplace_back(Layer<C1>{});
auto &c1_inout = tree_inout.c1_layers[c1_idx];
const bool started_after_tip = (c1_inout.size() == c1_ext.start_idx);
const bool started_at_tip = (c1_inout.size() == (c1_ext.start_idx + 1));
CHECK_AND_ASSERT_THROW_MES(started_after_tip || started_at_tip, "unexpected c1 layer start");
// We updated the last hash
if (started_at_tip)
c1_inout.back() = c1.clone(c1_ext.hashes.front());
for (std::size_t i = started_at_tip ? 1 : 0; i < c1_ext.hashes.size(); ++i)
c1_inout.emplace_back(c1.clone(c1_ext.hashes[i]));
++c1_idx;
}
use_c2 = !use_c2;
}
// existing tree should be valid
// TODO: only do this in debug build
// assert(validate_tree<C1, C2>(existing_tree_inout, c1, c2));
}
template<typename C_PARENT, typename C_CHILD>
bool validate_layer(const C_PARENT &c_parent,
const C_CHILD &c_child,
const Layer<C_PARENT> &parents,
const Layer<C_CHILD> &children)
{
// Get scalar representation of children
std::vector<typename C_PARENT::Scalar> child_scalars;
extend_scalars_from_cycle_points<C_CHILD, C_PARENT>(c_child, children, child_scalars);
const std::size_t max_chunk_size = c_parent.WIDTH;
// Hash chunk of children scalars, then see if the hash matches up to respective parent
std::size_t chunk_start_idx = 0;
for (std::size_t i = 0; i < parents.size(); ++i)
{
CHECK_AND_ASSERT_MES(child_scalars.size() > chunk_start_idx, false, "chunk start too high");
const std::size_t chunk_size = std::min(child_scalars.size() - chunk_start_idx, max_chunk_size);
CHECK_AND_ASSERT_MES(child_scalars.size() >= (chunk_start_idx + chunk_size), false, "chunk size too large");
const typename C_PARENT::Point &parent = parents[i];
const auto chunk_start = child_scalars.data() + chunk_start_idx;
const typename C_PARENT::Chunk chunk{chunk_start, chunk_size};
const typename C_PARENT::Point chunk_hash = get_new_parent(c_parent, chunk);
const auto actual_bytes = c_parent.to_bytes(parent);
const auto expected_bytes = c_parent.to_bytes(chunk_hash);
CHECK_AND_ASSERT_MES(actual_bytes == expected_bytes, false, "unexpected hash");
chunk_start_idx += chunk_size;
}
CHECK_AND_ASSERT_THROW_MES(chunk_start_idx == child_scalars.size(), "unexpected ending chunk start idx");
return true;
}
template<typename C1, typename C2>
bool validate_tree(const Tree<C1, C2> &tree, const C1 &c1, const C2 &c2)
{
const auto &leaves = tree.leaves;
const auto &c1_layers = tree.c1_layers;
const auto &c2_layers = tree.c2_layers;
CHECK_AND_ASSERT_MES(!leaves.empty(), false, "must have at least 1 leaf in tree");
CHECK_AND_ASSERT_MES(!c2_layers.empty(), false, "must have at least 1 c2 layer in tree");
CHECK_AND_ASSERT_MES(c2_layers.size() == c1_layers.size() || c2_layers.size() == (c1_layers.size() + 1),
false, "unexpected mismatch of c2 and c1 layers");
// Verify root has 1 member in it
const bool c2_is_root = c2_layers.size() > c1_layers.size();
CHECK_AND_ASSERT_MES(c2_is_root ? c2_layers.back().size() == 1 : c1_layers.back().size() == 1, false,
"root must have 1 member in it");
// Iterate from root down to layer above leaves, and check hashes match up correctly
bool parent_is_c2 = c2_is_root;
std::size_t c2_idx = c2_layers.size() - 1;
std::size_t c1_idx = c1_layers.empty() ? 0 : (c1_layers.size() - 1);
for (std::size_t i = 1; i < (c2_layers.size() + c1_layers.size()); ++i)
{
if (parent_is_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
const Layer<C2> &parents = c2_layers[c2_idx];
const Layer<C1> &children = c1_layers[c1_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c2_idx " + std::to_string(c2_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c1_idx " + std::to_string(c1_idx));
const bool valid = validate_layer<C2, C1>(c2, c1, parents, children);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c2_idx " + std::to_string(c2_idx));
--c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_layers.size(), "unexpected c1_idx");
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_layers.size(), "unexpected c2_idx");
const Layer<C1> &parents = c1_layers[c1_idx];
const Layer<C2> &children = c2_layers[c2_idx];
CHECK_AND_ASSERT_MES(!parents.empty(), false, "no parents at c1_idx " + std::to_string(c1_idx));
CHECK_AND_ASSERT_MES(!children.empty(), false, "no children at c2_idx " + std::to_string(c2_idx));
const bool valid = validate_layer<C1, C2>(c1, c2, parents, children);
CHECK_AND_ASSERT_MES(valid, false, "failed to validate c1_idx " + std::to_string(c1_idx));
--c1_idx;
}
parent_is_c2 = !parent_is_c2;
}
// // Now validate leaves
// return validate_leaves<C2>(c2, layers[0], leaves);
return true;
}
}

@ -0,0 +1,70 @@
# Copyright (c) 2016-2024, The Monero Project
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are
# permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of
# conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list
# of conditions and the following disclaimer in the documentation and/or other
# materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be
# used to endorse or promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
# THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
set(CARGO_CMD cargo build)
set(TARGET_DIR "debug")
else ()
set(CARGO_CMD cargo build --release)
set(TARGET_DIR "release")
endif ()
set(FCMP_RUST_CXX "${CMAKE_CURRENT_BINARY_DIR}/fcmp_rust.cc")
set(FCMP_RUST_HEADER_DIR "${MONERO_GENERATED_HEADERS_DIR}/fcmp_rust")
set(FCMP_RUST_HEADER "${FCMP_RUST_HEADER_DIR}/fcmp_rust.h")
set(CXX_HEADER "${FCMP_RUST_HEADER_DIR}/cxx.h")
# Removing OUTPUT files makes sure custom command runs every time
file(REMOVE_RECURSE "${FCMP_RUST_CXX}")
file(REMOVE_RECURSE "${FCMP_RUST_HEADER_DIR}")
file(MAKE_DIRECTORY "${FCMP_RUST_HEADER_DIR}")
add_custom_command(
COMMENT "Building rust fcmp lib"
OUTPUT ${FCMP_RUST_CXX} ${FCMP_RUST_HEADER} ${CXX_HEADER}
COMMAND CARGO_TARGET_DIR=${CMAKE_CURRENT_BINARY_DIR} ${CARGO_CMD}
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/cxxbridge/fcmp_rust/src/lib.rs.cc ${FCMP_RUST_CXX}
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/cxxbridge/fcmp_rust/src/lib.rs.h ${FCMP_RUST_HEADER}
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/cxxbridge/rust/cxx.h ${CXX_HEADER}
COMMAND echo "Finished copying fcmp rust targets"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
VERBATIM
)
add_custom_target(rust_cxx ALL DEPENDS ${CXX_HEADER})
set(fcmp_rust_sources ${FCMP_RUST_CXX})
monero_find_all_headers(fcmp_rust_headers "${FCMP_RUST_HEAfDER_DIR}")
monero_add_library(fcmp_rust
${fcmp_rust_sources}
${fcmp_rust_headers})
set(FCMP_RUST_LIB "${CMAKE_CURRENT_BINARY_DIR}/${TARGET_DIR}/libfcmp_rust.a")
target_link_libraries(fcmp_rust dl ${FCMP_RUST_LIB})

@ -0,0 +1,21 @@
[package]
name = "fcmp_rust"
version = "0.0.0"
edition = "2021"
[lib]
name = "fcmp_rust"
crate-type = ["staticlib"]
[dependencies]
cxx = "1.0"
full-chain-membership-proofs = { path = "../../../external/fcmp-plus-plus/crypto/fcmps" }
ciphersuite = { path = "../../../external/fcmp-plus-plus/crypto/ciphersuite", features = ["helioselene", "ed25519"] }
ec-divisors = { path = "../../../external/fcmp-plus-plus/crypto/divisors", features = ["ed25519"] }
rand_core = { version = "0.6", features = ["getrandom"] }
transcript = { package = "flexible-transcript", path = "../../../external/fcmp-plus-plus/crypto/transcript", features = ["recommended"] }
generalized-bulletproofs = { path = "../../../external/fcmp-plus-plus/crypto/generalized-bulletproofs", features = ["tests"] }
[build-dependencies]
cxx-build = "1.0"

@ -0,0 +1,5 @@
fn main() {
let _ = cxx_build::bridge("src/lib.rs");
println!("cargo:rerun-if-changed=src/lib.rs");
}

@ -0,0 +1,226 @@
use rand_core::OsRng;
use std::io;
use full_chain_membership_proofs::tree::hash_grow;
use transcript::RecommendedTranscript;
use ciphersuite::{group::{Group, GroupEncoding, ff::{PrimeField, Field}}, Ciphersuite, Ed25519, Selene, Helios};
use ec_divisors::DivisorCurve;
use generalized_bulletproofs::Generators;
// TODO: lint
#[cxx::bridge]
mod ffi {
// Rust types and signatures exposed to C++.
#[namespace = "fcmp_rust"]
extern "Rust" {
// TODO: Separate Helios and Selene namespaces
type HeliosGenerators;
type HeliosPoint;
type HeliosScalar;
type SeleneGenerators;
type SelenePoint;
type SeleneScalar;
fn random_helios_generators() -> Box<HeliosGenerators>;
fn random_helios_hash_init_point() -> Box<HeliosPoint>;
fn random_selene_generators() -> Box<SeleneGenerators>;
fn random_selene_hash_init_point() -> Box<SelenePoint>;
fn clone_helios_scalar(helios_scalar: &Box<HeliosScalar>) -> Box<HeliosScalar>;
fn clone_selene_scalar(selene_scalar: &Box<SeleneScalar>) -> Box<SeleneScalar>;
fn clone_helios_point(helios_point: &Box<HeliosPoint>) -> Box<HeliosPoint>;
fn clone_selene_point(selene_point: &Box<SelenePoint>) -> Box<SelenePoint>;
fn helios_scalar_to_bytes(helios_scalar: &Box<HeliosScalar>) -> [u8; 32];
fn selene_scalar_to_bytes(selene_scalar: &Box<SeleneScalar>) -> [u8; 32];
fn helios_point_to_bytes(helios_point: &Box<HeliosPoint>) -> [u8; 32];
fn selene_point_to_bytes(selene_point: &Box<SelenePoint>) -> [u8; 32];
fn ed25519_point_to_selene_scalar(ed25519_point: &[u8; 32]) -> Box<SeleneScalar>;
fn selene_point_to_helios_scalar(selene_point: &Box<SelenePoint>) -> Box<HeliosScalar>;
fn helios_point_to_selene_scalar(helios_point: &Box<HeliosPoint>) -> Box<SeleneScalar>;
fn helios_zero_scalar() -> Box<HeliosScalar>;
fn selene_zero_scalar() -> Box<SeleneScalar>;
pub fn hash_grow_helios(
helios_generators: &Box<HeliosGenerators>,
existing_hash: &Box<HeliosPoint>,
offset: usize,
prior_children: &[Box<HeliosScalar>],
new_children: &[Box<HeliosScalar>]
) -> Result<Box<HeliosPoint>>;
pub fn hash_grow_selene(
selene_generators: &Box<SeleneGenerators>,
existing_hash: &Box<SelenePoint>,
offset: usize,
prior_children: &[Box<SeleneScalar>],
new_children: &[Box<SeleneScalar>]
) -> Result<Box<SelenePoint>>;
}
}
// TODO: cleaner const usage of generators
// TODO: try to get closer to underlying types
// TODO: maybe don't do both tuple and Box? Just make these all boxes
pub struct HeliosGenerators(Generators<RecommendedTranscript, Helios>);
pub struct HeliosPoint(<Helios as Ciphersuite>::G);
pub struct HeliosScalar(<Helios as Ciphersuite>::F);
pub struct SeleneGenerators(Generators<RecommendedTranscript, Selene>);
pub struct SelenePoint(<Selene as Ciphersuite>::G);
pub struct SeleneScalar(<Selene as Ciphersuite>::F);
#[allow(non_snake_case)]
pub fn random_helios_generators() -> Box<HeliosGenerators> {
let helios_generators = generalized_bulletproofs::tests::generators::<Helios>(512);
Box::new(HeliosGenerators(helios_generators))
}
#[allow(non_snake_case)]
pub fn random_selene_generators() -> Box<SeleneGenerators> {
let selene_generators = generalized_bulletproofs::tests::generators::<Selene>(512);
Box::new(SeleneGenerators(selene_generators))
}
#[allow(non_snake_case)]
pub fn random_helios_hash_init_point() -> Box<HeliosPoint> {
let helios_hash_init_point = <Helios as Ciphersuite>::G::random(&mut OsRng);
dbg!(&helios_hash_init_point);
Box::new(HeliosPoint(helios_hash_init_point))
}
#[allow(non_snake_case)]
pub fn random_selene_hash_init_point() -> Box<SelenePoint> {
let selene_hash_init_point = <Selene as Ciphersuite>::G::random(&mut OsRng);
dbg!(&selene_hash_init_point);
Box::new(SelenePoint(selene_hash_init_point))
}
// TODO: should be able to use generics
// TODO: shorter names
pub fn clone_helios_scalar(helios_scalar: &Box<HeliosScalar>) -> Box<HeliosScalar> {
Box::new(HeliosScalar(helios_scalar.0))
}
pub fn clone_selene_scalar(selene_scalar: &Box<SeleneScalar>) -> Box<SeleneScalar> {
Box::new(SeleneScalar(selene_scalar.0))
}
pub fn clone_helios_point(helios_point: &Box<HeliosPoint>) -> Box<HeliosPoint> {
Box::new(HeliosPoint(helios_point.0))
}
pub fn clone_selene_point(selene_point: &Box<SelenePoint>) -> Box<SelenePoint> {
Box::new(SelenePoint(selene_point.0))
}
// TODO: generics
pub fn helios_scalar_to_bytes(helios_scalar: &Box<HeliosScalar>) -> [u8; 32] {
helios_scalar.0.to_repr()
}
pub fn selene_scalar_to_bytes(selene_scalar: &Box<SeleneScalar>) -> [u8; 32] {
selene_scalar.0.to_repr()
}
pub fn helios_point_to_bytes(helios_point: &Box<HeliosPoint>) -> [u8; 32] {
helios_point.0.to_bytes()
}
pub fn selene_point_to_bytes(selene_point: &Box<SelenePoint>) -> [u8; 32] {
selene_point.0.to_bytes()
}
// Get the x coordinate of the ed25519 point
// TODO: use generics for below logic
pub fn ed25519_point_to_selene_scalar(ed25519_point: &[u8; 32]) -> Box<SeleneScalar> {
// TODO: unwrap or else error
let ed25519_point = <Ed25519>::read_G(&mut ed25519_point.as_slice()).unwrap();
let xy_coords = <Ed25519 as Ciphersuite>::G::to_xy(ed25519_point);
let x: <Selene as Ciphersuite>::F = xy_coords.0;
Box::new(SeleneScalar(x))
}
// TODO: use generics for below logic
pub fn selene_point_to_helios_scalar(selene_point: &Box<SelenePoint>) -> Box<HeliosScalar> {
let xy_coords = <Selene as Ciphersuite>::G::to_xy(selene_point.0);
let x: <Helios as Ciphersuite>::F = xy_coords.0;
Box::new(HeliosScalar(x))
}
// TODO: use generics for below logic
pub fn helios_point_to_selene_scalar(helios_point: &Box<HeliosPoint>) -> Box<SeleneScalar> {
let xy_coords = <Helios as Ciphersuite>::G::to_xy(helios_point.0);
let x: <Selene as Ciphersuite>::F = xy_coords.0;
Box::new(SeleneScalar(x))
}
pub fn helios_zero_scalar() -> Box<HeliosScalar> {
Box::new(HeliosScalar(<Helios as Ciphersuite>::F::ZERO))
}
pub fn selene_zero_scalar() -> Box<SeleneScalar> {
Box::new(SeleneScalar(<Selene as Ciphersuite>::F::ZERO))
}
// TODO: use generics for curves
pub fn hash_grow_helios(
helios_generators: &Box<HeliosGenerators>,
existing_hash: &Box<HeliosPoint>,
offset: usize,
prior_children: &[Box<HeliosScalar>],
new_children: &[Box<HeliosScalar>]
) -> Result<Box<HeliosPoint>, io::Error> {
let prior_children = prior_children.iter().map(|c| c.0).collect::<Vec<_>>();
let new_children = new_children.iter().map(|c| c.0).collect::<Vec<_>>();
let hash = hash_grow(
&helios_generators.0,
existing_hash.0,
offset,
&prior_children,
&new_children
);
if let Some(hash) = hash {
Ok(Box::new(HeliosPoint(hash)))
} else {
Err(io::Error::new(io::ErrorKind::Other, "failed to grow hash"))
}
}
// TODO: use generics for curves
pub fn hash_grow_selene(
selene_generators: &Box<SeleneGenerators>,
existing_hash: &Box<SelenePoint>,
offset: usize,
prior_children: &[Box<SeleneScalar>],
new_children: &[Box<SeleneScalar>]
) -> Result<Box<SelenePoint>, io::Error> {
let prior_children = prior_children.iter().map(|c| c.0).collect::<Vec<_>>();
let new_children = new_children.iter().map(|c| c.0).collect::<Vec<_>>();
let hash = hash_grow(
&selene_generators.0,
existing_hash.0,
offset,
&prior_children,
&new_children
);
if let Some(hash) = hash {
Ok(Box::new(SelenePoint(hash)))
} else {
Err(io::Error::new(io::ErrorKind::Other, "failed to grow hash"))
}
}

@ -51,6 +51,7 @@ set(unit_tests_sources
epee_serialization.cpp
epee_utils.cpp
expect.cpp
fcmp_tree.cpp
json_serialization.cpp
get_xtype_from_string.cpp
hashchain.cpp
@ -113,11 +114,13 @@ monero_add_minimal_executable(unit_tests
target_link_libraries(unit_tests
PRIVATE
ringct
crypto
cryptonote_protocol
cryptonote_core
daemon_messages
daemon_rpc_server
blockchain_db
fcmp
lmdb_lib
rpc
net

@ -0,0 +1,304 @@
// Copyright (c) 2014, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "gtest/gtest.h"
#include "fcmp/fcmp.h"
#include "misc_log_ex.h"
#include <cmath>
static const fcmp::Leaves generate_leaves(const std::size_t num_leaves)
{
std::vector<fcmp::LeafTuple> tuples;
tuples.reserve(num_leaves);
for (std::size_t i = 0; i < num_leaves; ++i)
{
// Generate random output tuple
crypto::secret_key o,c;
crypto::public_key O,C;
crypto::generate_keys(O, o, o, false);
crypto::generate_keys(C, c, c, false);
tuples.emplace_back(fcmp::output_to_leaf_tuple(O, C));
}
return fcmp::Leaves{
.start_idx = 0,
.tuples = std::move(tuples)
};
}
static void log_tree_extension(const fcmp::TreeExtension<fcmp::Helios, fcmp::Selene> &tree_extension)
{
const auto &c1_extensions = tree_extension.c1_layer_extensions;
const auto &c2_extensions = tree_extension.c2_layer_extensions;
MDEBUG("Tree extension has " << tree_extension.leaves.tuples.size() << " leaves, "
<< c1_extensions.size() << " helios layers, " << c2_extensions.size() << " selene layers");
MDEBUG("Leaf start idx: " << tree_extension.leaves.start_idx);
for (std::size_t i = 0; i < tree_extension.leaves.tuples.size(); ++i)
{
const auto &leaf = tree_extension.leaves.tuples[i];
const auto O_x = fcmp::SELENE.to_string(leaf.O_x);
const auto I_x = fcmp::SELENE.to_string(leaf.I_x);
const auto C_x = fcmp::SELENE.to_string(leaf.C_x);
MDEBUG("Leaf idx " << ((i*fcmp::LEAF_TUPLE_SIZE) + tree_extension.leaves.start_idx) << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_extensions.size() + c2_extensions.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer");
const fcmp::LayerExtension<fcmp::Selene> &c2_layer = c2_extensions[c2_idx];
MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx);
for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j)
MDEBUG("Hash idx: " << (j + c2_layer.start_idx) << " , hash: " << fcmp::SELENE.to_string(c2_layer.hashes[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer");
const fcmp::LayerExtension<fcmp::Helios> &c1_layer = c1_extensions[c1_idx];
MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx);
for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j)
MDEBUG("Hash idx: " << (j + c1_layer.start_idx) << " , hash: " << fcmp::HELIOS.to_string(c1_layer.hashes[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
static void log_tree(const fcmp::Tree<fcmp::Helios, fcmp::Selene> &tree)
{
MDEBUG("Tree has " << tree.leaves.size() << " leaves, "
<< tree.c1_layers.size() << " helios layers, " << tree.c2_layers.size() << " selene layers");
for (std::size_t i = 0; i < tree.leaves.size(); ++i)
{
const auto &leaf = tree.leaves[i];
const auto O_x = fcmp::SELENE.to_string(leaf.O_x);
const auto I_x = fcmp::SELENE.to_string(leaf.I_x);
const auto C_x = fcmp::SELENE.to_string(leaf.C_x);
MDEBUG("Leaf idx " << i << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (tree.c1_layers.size() + tree.c2_layers.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < tree.c2_layers.size(), "unexpected c2 layer");
const fcmp::Layer<fcmp::Selene> &c2_layer = tree.c2_layers[c2_idx];
MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c2_layer.size(); ++j)
MDEBUG("Hash idx: " << j << " , hash: " << fcmp::SELENE.to_string(c2_layer[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < tree.c1_layers.size(), "unexpected c1 layer");
const fcmp::Layer<fcmp::Helios> &c1_layer = tree.c1_layers[c1_idx];
MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c1_layer.size(); ++j)
MDEBUG("Hash idx: " << j << " , hash: " << fcmp::HELIOS.to_string(c1_layer[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
static void log_last_chunks(const fcmp::LastChunks<fcmp::Helios, fcmp::Selene> &last_chunks)
{
const auto &c1_last_chunks = last_chunks.c1_last_chunks;
const auto &c2_last_chunks = last_chunks.c2_last_chunks;
MDEBUG("Total of " << c1_last_chunks.size() << " Helios last chunks and "
<< c2_last_chunks.size() << " Selene last chunks");
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_last_chunks.size() + c2_last_chunks.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_chunks.size(), "unexpected c2 layer");
const fcmp::LastChunkData<fcmp::Selene> &last_chunk = c2_last_chunks[c2_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::SELENE.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::SELENE.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_chunks.size(), "unexpected c1 layer");
const fcmp::LastChunkData<fcmp::Helios> &last_chunk = c1_last_chunks[c1_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::HELIOS.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::HELIOS.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c1_idx;
}
use_c2 = !use_c2;
}
}
TEST(fcmp_tree, grow_tree)
{
// TODO: 1 .. std::pow(fcmp::SELENE.WIDTH, 5)+2
const std::vector<std::size_t> N_LEAVES{
1,
2,
3,
fcmp::SELENE.WIDTH - 1,
fcmp::SELENE.WIDTH,
fcmp::SELENE.WIDTH + 1,
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 2) - 1,
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 2),
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 2) + 1,
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 3)
// (std::size_t)std::pow(fcmp::SELENE.WIDTH, 4),
// (std::size_t)std::pow(fcmp::SELENE.WIDTH, 5)
};
for (const auto &init_leaves : N_LEAVES)
{
for (const auto &ext_leaves : N_LEAVES)
{
MDEBUG("Adding " << init_leaves << " leaves to tree, then extending by " << ext_leaves << " leaves");
fcmp::Tree<fcmp::Helios, fcmp::Selene> global_tree;
// TODO: use a class that's initialized with the curve cycle and don't need to call templated functions with curve instances every time
// Initially extend global tree by `init_leaves`
{
MDEBUG("Adding " << init_leaves << " leaves to tree");
const auto tree_extension = fcmp::get_tree_extension<fcmp::Helios, fcmp::Selene>(
fcmp::LastChunks<fcmp::Helios, fcmp::Selene>{},
generate_leaves(init_leaves),
fcmp::HELIOS,
fcmp::SELENE);
log_tree_extension(tree_extension);
fcmp::extend_tree<fcmp::Helios, fcmp::Selene>(
tree_extension,
fcmp::HELIOS,
fcmp::SELENE,
global_tree);
log_tree(global_tree);
const bool validated = fcmp::validate_tree<fcmp::Helios, fcmp::Selene>(
global_tree,
fcmp::HELIOS,
fcmp::SELENE);
ASSERT_TRUE(validated);
MDEBUG("Successfully added initial " << init_leaves << " leaves to tree");
}
// Then extend the global tree again by `ext_leaves`
{
MDEBUG("Extending tree by " << ext_leaves << " leaves");
const fcmp::LastChunks<fcmp::Helios, fcmp::Selene> &last_chunks = fcmp::get_last_chunks<fcmp::Helios, fcmp::Selene>(
fcmp::HELIOS,
fcmp::SELENE,
global_tree);
log_last_chunks(last_chunks);
const auto tree_extension = fcmp::get_tree_extension<fcmp::Helios, fcmp::Selene>(
last_chunks,
generate_leaves(ext_leaves),
fcmp::HELIOS,
fcmp::SELENE);
log_tree_extension(tree_extension);
fcmp::extend_tree<fcmp::Helios, fcmp::Selene>(
tree_extension,
fcmp::HELIOS,
fcmp::SELENE,
global_tree);
log_tree(global_tree);
const bool validated = fcmp::validate_tree<fcmp::Helios, fcmp::Selene>(
global_tree,
fcmp::HELIOS,
fcmp::SELENE);
ASSERT_TRUE(validated);
MDEBUG("Successfully extended by " << ext_leaves << " leaves");
}
}
}
}