mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-04-30 12:46:11 -04:00
274 lines
4.9 KiB
Markdown
274 lines
4.9 KiB
Markdown
## binary search
|
|
|
|
<br>
|
|
|
|
* a binary search operates on a (sorted) contiguous sequence with a specified left and right index (this is called the **search space**).
|
|
|
|
* binary searching is composed of 3 sections:
|
|
* **pre-processing**: sort if collection is unsorted
|
|
* **binary search**: using a loop or recursion to divide search space in half after each comparison (`O(log(N)`)
|
|
* **post-processing**: determine viable candidates in the remaining space
|
|
|
|
* there are 3 "templates" when writing a binary search:
|
|
* `while left < right`, with `left = mid + 1` and `right = mid - 1`
|
|
* `while left < right`, with `left = mid + 1` and `right = mid`, and `left` is returned
|
|
* `while left + 1 < right`, with `left = mid` and `right = mid`, and `left` and `right` are returned
|
|
|
|
|
|
<br>
|
|
|
|
----
|
|
|
|
### iterative
|
|
|
|
<br>
|
|
|
|
```python
|
|
if lens(nums) == 0:
|
|
return False
|
|
|
|
lower, higher = 0, len(array)
|
|
|
|
while lower < higher:
|
|
mid = (higher + lower) // 2
|
|
|
|
if array[mid] == item:
|
|
return mid
|
|
elif array[mid] > item:
|
|
higher = mid - 1
|
|
else:
|
|
lower = mid + 1
|
|
|
|
return False
|
|
```
|
|
|
|
<br>
|
|
|
|
----
|
|
|
|
### recursive
|
|
|
|
<br>
|
|
|
|
```python
|
|
def binary_search_recursive(array, item, higher=None, lower=0):
|
|
|
|
higher = higher or len(array)
|
|
|
|
if higher < lower:
|
|
return False
|
|
|
|
mid = (higher + lower) // 2
|
|
|
|
if item == array[mid]:
|
|
return mid
|
|
|
|
elif item < array[mid]:
|
|
return binary_search_recursive(array, item, mid - 1, lower)
|
|
|
|
else:
|
|
return binary_search_recursive(array, item, higher, mid + 1)
|
|
```
|
|
|
|
<br>
|
|
|
|
* or a slightly different version that does not carry `lower` and `higher`:
|
|
|
|
<br>
|
|
|
|
```python
|
|
def binary_search_recursive(array, item):
|
|
|
|
start, end = 0, len(array)
|
|
mid = (end - start) // 2
|
|
|
|
while len(array) > 0:
|
|
if array[mid] == item:
|
|
return True
|
|
elif array[mid] > item:
|
|
return binary_search_recursive(array[mid + 1:], item)
|
|
else:
|
|
return binary_search_recursive(array[:mid], item)
|
|
|
|
return False
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### in a matrix
|
|
|
|
<br>
|
|
|
|
```python
|
|
def binary_search_matrix(matrix, item, lower=0, higher=None):
|
|
|
|
if not matrix:
|
|
return False
|
|
|
|
rows = len(matrix)
|
|
cols = len(matrix[0])
|
|
higher = higher or rows * cols
|
|
|
|
if higher > lower:
|
|
mid = (higher + lower) // 2
|
|
row = mid // cols
|
|
col = mid % cols
|
|
|
|
if item == matrix[row][col]:
|
|
return row, col
|
|
elif item < matrix[row][col]:
|
|
return binary_search_matrix(matrix, item, lower, mid - 1)
|
|
else:
|
|
return binary_search_matrix(matrix, item, mid + 1, higher)
|
|
|
|
return False
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### find the square root
|
|
|
|
<br>
|
|
|
|
```python
|
|
|
|
def sqrt(x) -> int:
|
|
|
|
if x < 2:
|
|
return x
|
|
|
|
left, right = 2, x // 2
|
|
|
|
while left <= right:
|
|
|
|
mid = (right + left) // 2
|
|
num = mid * mid
|
|
|
|
if num > x:
|
|
right = mid - 1
|
|
elif num < x:
|
|
left = mid + 1
|
|
else:
|
|
return mid
|
|
|
|
return right
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### find min in a rotated array
|
|
|
|
<br>
|
|
|
|
```python
|
|
def find_min(nums):
|
|
|
|
left, right = 0, len(nums) - 1
|
|
|
|
while nums[left] > nums[right]:
|
|
|
|
mid = (left + right) // 2
|
|
|
|
if nums[mid] < nums[right]:
|
|
right = mid
|
|
else:
|
|
left = mid + 1
|
|
|
|
return nums[left]
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### find a peak element
|
|
|
|
<br>
|
|
|
|
* a peak element is an element that is strictly greater than its neighbors.
|
|
|
|
<br>
|
|
|
|
```python
|
|
def peak_element(nums):
|
|
|
|
left, right = 0, len(nums) - 1
|
|
|
|
while left < right:
|
|
|
|
mid = (left + right) // 2
|
|
|
|
if nums[mid + 1] < nums[mid]:
|
|
right = mid
|
|
else:
|
|
left = mid + 1
|
|
|
|
return left
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### find a desired sum
|
|
|
|
<br>
|
|
|
|
* if the array is sorted:
|
|
|
|
<br>
|
|
|
|
```python
|
|
def find_pairs_max_sum(array, desired_sum):
|
|
|
|
i, j = 0, len(array) - 1
|
|
|
|
while i < j:
|
|
this_sum = array[i] + array[j]
|
|
if this_sum == desired_sum:
|
|
return array[i], array[j]
|
|
elif this_sum > desired_sum:
|
|
j -= 1
|
|
else:
|
|
i += 1
|
|
|
|
return False
|
|
```
|
|
|
|
<br>
|
|
|
|
* if the array is not sorted, use a hash table:
|
|
|
|
<br>
|
|
|
|
```python
|
|
def find_pairs_not_sorted(array, desired_sum):
|
|
|
|
lookup = {}
|
|
|
|
for item in array:
|
|
key = desired_sum - item
|
|
|
|
if key in lookup.keys():
|
|
lookup[key] += 1
|
|
else:
|
|
lookup[key] = 1
|
|
|
|
for item in array:
|
|
key = desired_sum - item
|
|
|
|
if item in lookup.keys():
|
|
if lookup[item] == 1:
|
|
return (item, key)
|
|
else:
|
|
lookup[item] -= 1
|
|
|
|
return False
|
|
```
|