mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-11-23 15:40:34 -05:00
| .. | ||
| binary_search.py | ||
| find_minimum_rotated_array.py | ||
| find_pair_nums.py | ||
| find_peak_element.py | ||
| README.md | ||
| rotated_array.py | ||
| sqrt_x.py | ||
binary search
-
a binary search operates on a contiguous sequence with a specified left and right index (this is called the search space).
-
binary searching is composed of 3 sections:
- pre-processing: sort if collection is unsorted
- binary search: using a loop or recursion to divide search space in half after each comparison (
O(log(N)) - **post-processing`: determine viable candidates in the remaining space
-
there are 3 "templates" when writing a binary search:
while left < right, withleft = mid + 1andright = mid - 1while left < right, withleft = mid + 1andright = mid, andleftis returnedwhile left + 1 < right, withleft = midandright = mid, andleftandrightare returned
iterative
if lens(nums) == 0:
return False
lower, higher = 0, len(array)
while lower < higher:
mid = (higher + lower) // 2
if array[mid] == item:
return mid
elif array[mid] > item:
higher = mid - 1
else:
lower = mid + 1
return False
recursive
def binary_search_recursive(array, item, higher=None, lower=0):
higher = higher or len(array)
if higher < lower:
return False
mid = (higher + lower) // 2
if item == array[mid]:
return mid
elif item < array[mid]:
return binary_search_recursive(array, item, mid - 1, lower)
else:
return binary_search_recursive(array, item, higher, mid + 1)
in a matrix
def binary_search_matrix(matrix, item, lower=0, higher=None):
if not matrix:
return False
rows = len(matrix)
cols = len(matrix[0])
higher = higher or rows * cols
if higher > lower:
mid = (higher + lower) // 2
row = mid // cols
col = mid % cols
if item == matrix[row][col]:
return row, col
elif item < matrix[row][col]:
return binary_search_matrix(matrix, item, lower, mid - 1)
else:
return binary_search_matrix(matrix, item, mid + 1, higher)
return False