mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-04-29 20:26:07 -04:00
Update README.md
This commit is contained in:
parent
e372bbe6f7
commit
855ecff683
@ -1,19 +1,104 @@
|
||||
## searching
|
||||
## binary search
|
||||
|
||||
<br>
|
||||
|
||||
|
||||
### binary search
|
||||
|
||||
<br>
|
||||
|
||||
* a binary search operates on a contiguous sequence with a specified left and right index. this is called the search space.
|
||||
* a binary search operates on a contiguous sequence with a specified left and right index (this is called the **search space**).
|
||||
|
||||
* binary searching is composed of 3 sections:
|
||||
* pre-processing: sort if collection is unsorted
|
||||
* binary search: using a loop or recursion to divide search sapce in half after each comparison
|
||||
* post-processing: determine viable candidates in the remaining space
|
||||
* **pre-processing**: sort if collection is unsorted
|
||||
* **binary search**: using a loop or recursion to divide search space in half after each comparison (`O(log(N)`)
|
||||
* **post-processing`: determine viable candidates in the remaining space
|
||||
|
||||
* there are 3 "templates" when writing a binary search:
|
||||
* `while left < right`, with `left = mid + 1` and `right = mid - 1`
|
||||
* `while left < right`, with `left = mid + 1` and `right = mid`, and `left` is returned
|
||||
* `while left + 1 < right`, with `left = 1` and `right = mid`, and `left` and `right` are returned
|
||||
* `while left + 1 < right`, with `left = mid` and `right = mid`, and `left` and `right` are returned
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
----
|
||||
|
||||
### iterative
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
if lens(nums) == 0:
|
||||
return False
|
||||
|
||||
lower, higher = 0, len(array)
|
||||
|
||||
while lower < higher:
|
||||
mid = (higher + lower) // 2
|
||||
|
||||
if array[mid] == item:
|
||||
return mid
|
||||
elif array[mid] > item:
|
||||
higher = mid - 1
|
||||
else:
|
||||
lower = mid + 1
|
||||
|
||||
return False
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
----
|
||||
|
||||
### recursive
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
def binary_search_recursive(array, item, higher=None, lower=0):
|
||||
|
||||
higher = higher or len(array)
|
||||
|
||||
if higher < lower:
|
||||
return False
|
||||
|
||||
mid = (higher + lower) // 2
|
||||
|
||||
if item == array[mid]:
|
||||
return mid
|
||||
|
||||
elif item < array[mid]:
|
||||
return binary_search_recursive(array, item, mid - 1, lower)
|
||||
|
||||
else:
|
||||
return binary_search_recursive(array, item, higher, mid + 1)
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
---
|
||||
|
||||
### in a matrix
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
def binary_search_matrix(matrix, item, lower=0, higher=None):
|
||||
|
||||
if not matrix:
|
||||
return False
|
||||
|
||||
rows = len(matrix)
|
||||
cols = len(matrix[0])
|
||||
higher = higher or rows * cols
|
||||
|
||||
if higher > lower:
|
||||
mid = (higher + lower) // 2
|
||||
row = mid // cols
|
||||
col = mid % cols
|
||||
|
||||
if item == matrix[row][col]:
|
||||
return row, col
|
||||
elif item < matrix[row][col]:
|
||||
return binary_search_matrix(matrix, item, lower, mid - 1)
|
||||
else:
|
||||
return binary_search_matrix(matrix, item, mid + 1, higher)
|
||||
|
||||
return False
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user