mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-04-30 04:36:08 -04:00
377 lines
8.1 KiB
Markdown
377 lines
8.1 KiB
Markdown
## queues
|
|
|
|
<br>
|
|
|
|
* queues are **first in, first out (FIFO) abstract structures** (*i.e.*, items are removed in the same order they are added) that can be implemented with two arrays or a dynamic array (linked list), as long as items are added and removed from opposite sides.
|
|
|
|
* queues support **enqueue** (add to one end) and **dequeue** (remove from the other end, or tail).
|
|
|
|
* if implemented with a dynamic array, a more efficient solution is to use a circular queue (ring buffer), *i.e.*, a fixed-size array and two pointers to indicate the starting and ending positions.
|
|
* an advantage of circular queues is that we can use the spaces in front of the queue.
|
|
* in a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. but using the circular queue, we can use the space to store new values.
|
|
|
|
* queues are often used in **breath-first search** (where you store a list of nodes to be processed) or when implementing a cache.
|
|
|
|
* in python, queues can be called with `collections.deque()` (and methods `popleft()` and `insert()`).
|
|
|
|
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### designing a circular queue
|
|
|
|
<br>
|
|
|
|
* a circular queue can be built with either arrays or linked lists (nodes).
|
|
|
|
<br>
|
|
|
|
#### with an array
|
|
|
|
<br>
|
|
|
|
* to build a ring with a fixed size array, any of the elements could be considered as the head.
|
|
|
|
|
|
<br>
|
|
|
|
|
|
```python
|
|
class CircularQueue:
|
|
|
|
def __init__(self, size):
|
|
self.head = 0
|
|
self.tail = 0
|
|
self.size = size
|
|
self.queue = [None] * self.size
|
|
|
|
def enqueue(self, value: int) -> bool:
|
|
if self.is_full():
|
|
return False
|
|
|
|
if self.is_empty():
|
|
self.head = 0
|
|
|
|
while self.queue[self.tail] is not None:
|
|
self.tail += 1
|
|
if self.tail == self.size:
|
|
self.tail = 0
|
|
self.queue[self.tail] = value
|
|
|
|
return True
|
|
|
|
def dequeue(self) -> bool:
|
|
if self.is_empty():
|
|
return False
|
|
|
|
value = self.queue[self.head]
|
|
self.queue[self.head] = None
|
|
self.head += 1
|
|
|
|
if self.head == self.size:
|
|
self.head = 0
|
|
|
|
return True
|
|
|
|
def front(self) -> int:
|
|
return self.queue[self.head] or False
|
|
|
|
def rear(self) -> int:
|
|
return self.queue[self.tail] or False
|
|
|
|
def is_empty(self) -> bool:
|
|
for n in self.queue:
|
|
if n is not None:
|
|
return False
|
|
return True
|
|
|
|
def is_full(self) -> bool:
|
|
for n in self.queue:
|
|
if n is None:
|
|
return False
|
|
return True
|
|
```
|
|
|
|
<br>
|
|
|
|
* to enqueue, you loop the queue with the tail index until you find a `None` (even if it has to loop back):
|
|
|
|
<br>
|
|
|
|
```python
|
|
while queue[self.tail]:
|
|
|
|
self.tail += 1
|
|
if self.tail == self.size:
|
|
self.tail = 0
|
|
self.queue[self.tail] = value
|
|
```
|
|
|
|
<br>
|
|
|
|
* to dequeue, you simply pop the head value:
|
|
|
|
<br>
|
|
|
|
```python
|
|
value = self.queue[self.head]
|
|
self.queue[self.head] = None
|
|
self.head += 1
|
|
```
|
|
|
|
<br>
|
|
|
|
* as long as we know the length of the queue, we can instantly locate its tails based on this formula:
|
|
|
|
<br>
|
|
|
|
```
|
|
tail_index = (head_index + current_length - 1) % size
|
|
```
|
|
|
|
<br>
|
|
|
|
* there is one occasion when `tail` index is set to zero:
|
|
* when the enqueue operation adds to the last position in the array and tail has to loop back (`self.tail == self.size`).
|
|
|
|
* there are two occasions when `head` index is set to zero:
|
|
* when the queue is checked as empty
|
|
* when the dequeue operation popped the last element in the array and head has to loop back (`self.head == self.size`).
|
|
|
|
|
|
|
|
<br>
|
|
|
|
* another version used only one index (for `head`) and calculate the tail with the equation:
|
|
|
|
<br>
|
|
|
|
```python
|
|
(self.head + self.count - 1) % self.size
|
|
````
|
|
|
|
<br>
|
|
|
|
* and the next tail with:
|
|
|
|
<br>
|
|
|
|
```python
|
|
(self.head + self.count) % self.size
|
|
```
|
|
|
|
<br>
|
|
|
|
* and the next `head` is always given by:
|
|
|
|
<br>
|
|
|
|
```python
|
|
(self.head + 1) % self.size
|
|
```
|
|
|
|
<br>
|
|
|
|
* * in the example below we also implement the methods `is_empty` and `is_full` using an extra counter variable `self.count` that can be compared to `self.size` or `0` and used to validate `rear` and `front`.
|
|
|
|
<br>
|
|
|
|
```python
|
|
class CircularQueue:
|
|
|
|
def __init__(self, size):
|
|
self.head = 0
|
|
self.count = 0
|
|
self.queue = [0] * size
|
|
self.size = size
|
|
|
|
def _get_tail(self):
|
|
return (self.head + self.count - 1) % self.size
|
|
|
|
def _get_next_tail(self):
|
|
return (self.head + self.count) % self.size
|
|
|
|
def _get_next_head(self):
|
|
return (self.head + 1) % self.size
|
|
|
|
def enqueue(self, value: int) -> bool:
|
|
|
|
if self.is_empty():
|
|
return False
|
|
|
|
self.queue[self._get_next_tail()] = value
|
|
self.count += 1
|
|
|
|
return True
|
|
|
|
def dequeue(self) -> bool:
|
|
|
|
if self.is_empty():
|
|
return False
|
|
|
|
self.head = self._get_next_head()
|
|
self.count -= 1
|
|
|
|
return True
|
|
|
|
def Front(self) -> int:
|
|
if self.is_empty():
|
|
return False
|
|
|
|
return self.queue[self.head]
|
|
|
|
def Rear(self) -> int:
|
|
if self.is_empty():
|
|
return False
|
|
|
|
return self.queue[self._get_tail()]
|
|
|
|
def isEmpty(self) -> bool:
|
|
return self.count == 0
|
|
|
|
def isFull(self) -> bool:
|
|
return self.count == self.size
|
|
```
|
|
|
|
<br>
|
|
|
|
|
|
|
|
#### with linked lists
|
|
|
|
<br>
|
|
|
|
|
|
* a linked list could be more memory efficient, since it does not pre-allocate memory for unused capacity (and size of the queue is not "artificial" like before).
|
|
|
|
* note that this queue is not thread-safe: the data structure could be corrupted in a multi-threaded environment (as race-condition could occur). to mitigate this problem, one could add the protection of a lock.
|
|
|
|
<br>
|
|
|
|
```python
|
|
class Node:
|
|
def __init__(self, value, next=None):
|
|
|
|
self.value = value
|
|
self.next = next
|
|
|
|
|
|
class Queue:
|
|
|
|
def __init__(self, size):
|
|
|
|
self.size = size
|
|
self.count = 0
|
|
self.head = None
|
|
self.tail = None
|
|
|
|
def enqueue(self, value: int) -> bool:
|
|
|
|
if self.is_full():
|
|
return False
|
|
|
|
if self.is_empty():
|
|
self.head = self.tail = Node(value)
|
|
|
|
else:
|
|
self.tail.next = Node(value)
|
|
self.tail = self.tail.next
|
|
|
|
self.count += 1
|
|
|
|
return True
|
|
|
|
def dequeue(self) -> bool:
|
|
|
|
if self.is_empty():
|
|
return False
|
|
|
|
self.head = self.head.next
|
|
self.count -= 1
|
|
|
|
return True
|
|
|
|
def front(self) -> int:
|
|
if self.is_empty():
|
|
return False
|
|
return self.head.value
|
|
|
|
def rear(self) -> int:
|
|
if self.is_empty():
|
|
return False
|
|
return self.tail.value
|
|
|
|
def is_empty(self) -> bool:
|
|
return self.count == 0
|
|
|
|
def is_full(self) -> bool:
|
|
return self.count == self.size
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### a stream with rate limiter
|
|
|
|
<br>
|
|
|
|
```python
|
|
class Logger:
|
|
|
|
def __init__(self):
|
|
self.msg_set = set()
|
|
self.msg_queue = deque()
|
|
|
|
def print_message(self, timestamp, message) -> bool:
|
|
|
|
while self.msg_queue:
|
|
msg, msg_timestamp = self.msg_queue[0]
|
|
if timestamp - msg_timestamp >= 10:
|
|
self.msg_queue.popleft()
|
|
self.msg_set.remove(msg)
|
|
else:
|
|
break
|
|
|
|
if message not in self.msg_set:
|
|
self.msg_set.add(message)
|
|
self.msg_queue.append((message, timestamp))
|
|
return True
|
|
|
|
return False
|
|
```
|
|
|
|
<br>
|
|
|
|
---
|
|
|
|
### moving average
|
|
|
|
<br>
|
|
|
|
* given a stream of integers and a window size, the moving average in the sliding window can be calculated with a queue:
|
|
|
|
<br>
|
|
|
|
```python
|
|
|
|
class MovingAverage:
|
|
|
|
def __init__(self, size: int):
|
|
|
|
self.queue = []
|
|
self.size = size
|
|
|
|
|
|
def next(self, val: int) -> float:
|
|
|
|
self.queue.append(val)
|
|
|
|
if len(self.queue) > self.size:
|
|
self.queue.pop(0)
|
|
|
|
return sum(self.queue) / len(self.queue)
|
|
```
|