RNode_Firmware/Utilities.h
2022-02-13 20:20:21 -05:00

1089 lines
25 KiB
C++

#if LIBRARY_TYPE == LIBRARY_ARDUINO
#include <EEPROM.h>
#endif
#include <stddef.h>
#include "Config.h"
#include "LoRa.h"
#include "ROM.h"
#include "Framing.h"
#include "MD5.h"
#if LIBRARY_TYPE == LIBRARY_C
#include <time.h>
// We need a delay()
void delay(int ms) {
struct timespec interval;
interval.tv_sec = ms / 1000;
interval.tv_nsec = (ms % 1000) * 1000 * 1000;
// TODO: handle signals interrupting sleep
nanosleep(&interval, NULL);
}
// And millis()
struct timespec millis_base;
uint32_t millis() {
// Time since first call is close enough.
static bool base_set(false);
if (!base_set) {
if (clock_gettime(CLOCK_MONOTONIC, &millis_base)) {
exit(1);
}
base_set = true;
}
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now)) {
exit(1);
}
return (now.tv_sec - millis_base.tv_sec) * 1000 + (now.tv_nsec - millis_base.tv_nsec)/(1000*1000);
}
// We also need a Serial
class SerialClass {
public:
const char* fifoPath = "rnode_socket";
void begin(int baud) {
int status = mkfifo(fifoPath, 0666);
if (status) {
perror("Making fifo failed");
exit(1);
}
// TODO: Need a bidirectional thing here: openpty???
_fd = open(fifoPath, O_RDWR);
if (_fd < 0) {
perror("could not open fifo");
exit(1);
}
}
// Be truthy if connected
operator bool() {
return _fd > 0;
}
void write(int b) {
ssize_t written = ::write(_fd,
}
void write(const char* data) {
throw std::runtime_error("Unimplemented");
}
bool available() {
throw std::runtime_error("Unimplemented");
}
uint8_t read() {
throw std::runtime_error("Unimplemented");
}
protected:
int _fd = -1;
};
SerialClass Serial;
// And random(below);
int random(int below) {
return rand() % below;
}
#endif
#if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
#include <avr/wdt.h>
#include <util/atomic.h>
#endif
uint8_t boot_vector = 0x00;
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
uint8_t OPTIBOOT_MCUSR __attribute__ ((section(".noinit")));
void resetFlagsInit(void) __attribute__ ((naked)) __attribute__ ((used)) __attribute__ ((section (".init0")));
void resetFlagsInit(void) {
__asm__ __volatile__ ("sts %0, r2\n" : "=m" (OPTIBOOT_MCUSR) :);
}
#elif MCU_VARIANT == MCU_ESP32
// TODO: Get ESP32 boot flags
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif MCU_VARIANT == MCU_ESP32
#if BOARD_MODEL == BOARD_TBEAM
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#if defined(EXTERNAL_LEDS)
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#else
void led_rx_on() { digitalWrite(pin_led_rx, LOW); }
void led_rx_off() { digitalWrite(pin_led_rx, HIGH); }
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_1
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_HUZZAH32
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif
#elif MCU_VARIANT == MCU_LINUX
#if BOARD_MODEL == BOARD_SPIDEV
// No LEDs on this board. SPI only.
void led_rx_on() { }
void led_rx_off() { }
void led_tx_on() { }
void led_tx_off() { }
#endif
#endif
void hard_reset(void) {
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
wdt_enable(WDTO_15MS);
while(true) {
led_tx_on(); led_rx_off();
}
#elif MCU_VARIANT == MCU_ESP32
ESP.restart();
#elif MCU_VARIANT == MCU_LINUX
// TODO: re-exec ourselves?
// For now just quit.
exit(0);
#endif
}
void led_indicate_error(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_rx_on();
led_tx_off();
delay(100);
led_rx_off();
led_tx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
led_tx_off();
}
void led_indicate_boot_error() {
while (true) {
led_tx_on();
led_rx_off();
delay(10);
led_rx_on();
led_tx_off();
delay(5);
}
}
void led_indicate_warning(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
led_tx_on();
while(cycles > 0) {
led_tx_off();
delay(100);
led_tx_on();
delay(100);
if (!forever) cycles--;
}
led_tx_off();
}
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_LINUX
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_rx_off();
delay(100);
led_rx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
}
#elif MCU_VARIANT == MCU_ESP32
#if BOARD_MODEL == BOARD_LORA32_V2_1
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_rx_off();
delay(100);
led_rx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
}
#elif BOARD_MODEL == BOARD_LORA32_V2_0
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_rx_off();
delay(100);
led_rx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
}
#else
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_tx_off();
delay(100);
led_tx_on();
delay(100);
if (!forever) cycles--;
}
led_tx_off();
}
#endif
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32
unsigned long led_standby_ticks = 0;
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
uint8_t led_standby_min = 1;
uint8_t led_standby_max = 40;
unsigned long led_standby_wait = 11000;
#elif MCU_VARIANT == MCU_ESP32
uint8_t led_standby_min = 200;
uint8_t led_standby_max = 255;
uint8_t led_notready_min = 0;
uint8_t led_notready_max = 255;
uint8_t led_notready_value = led_notready_min;
int8_t led_notready_direction = 0;
unsigned long led_notready_ticks = 0;
unsigned long led_standby_wait = 1768;
unsigned long led_notready_wait = 150;
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32
uint8_t led_standby_value = led_standby_min;
int8_t led_standby_direction = 0;
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
void led_indicate_standby() {
led_standby_ticks++;
if (led_standby_ticks > led_standby_wait) {
led_standby_ticks = 0;
if (led_standby_value <= led_standby_min) {
led_standby_direction = 1;
} else if (led_standby_value >= led_standby_max) {
led_standby_direction = -1;
}
led_standby_value += led_standby_direction;
analogWrite(pin_led_rx, led_standby_value);
led_tx_off();
}
}
#elif MCU_VARIANT == MCU_ESP32
void led_indicate_standby() {
led_standby_ticks++;
if (led_standby_ticks > led_standby_wait) {
led_standby_ticks = 0;
if (led_standby_value <= led_standby_min) {
led_standby_direction = 1;
} else if (led_standby_value >= led_standby_max) {
led_standby_direction = -1;
}
led_standby_value += led_standby_direction;
if (led_standby_value > 253) {
led_tx_on();
} else {
led_tx_off();
}
#if BOARD_MODEL == BOARD_LORA32_V2_1
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#else
led_rx_off();
#endif
}
}
#elif MCU_VARIANT == MCU_LINUX
// No LEDs available.
void led_indicate_standby() {}
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
void led_indicate_not_ready() {
led_standby_ticks++;
if (led_standby_ticks > led_standby_wait) {
led_standby_ticks = 0;
if (led_standby_value <= led_standby_min) {
led_standby_direction = 1;
} else if (led_standby_value >= led_standby_max) {
led_standby_direction = -1;
}
led_standby_value += led_standby_direction;
analogWrite(pin_led_tx, led_standby_value);
led_rx_off();
}
}
#elif MCU_VARIANT == MCU_ESP32
void led_indicate_not_ready() {
led_notready_ticks++;
if (led_notready_ticks > led_notready_wait) {
led_notready_ticks = 0;
if (led_notready_value <= led_notready_min) {
led_notready_direction = 1;
} else if (led_notready_value >= led_notready_max) {
led_notready_direction = -1;
}
led_notready_value += led_notready_direction;
if (led_notready_value > 128) {
led_tx_on();
} else {
led_tx_off();
}
#if BOARD_MODEL == BOARD_LORA32_V2_1
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#else
led_rx_off();
#endif
}
}
#elif MCU_VARIANT == MCU_LINUX
// No LEDs available.
void led_indicate_not_ready() {}
#endif
void escapedSerialWrite(uint8_t byte) {
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
void kiss_indicate_reset() {
Serial.write(FEND);
Serial.write(CMD_RESET);
Serial.write(CMD_RESET_BYTE);
Serial.write(FEND);
}
void kiss_indicate_error(uint8_t error_code) {
Serial.write(FEND);
Serial.write(CMD_ERROR);
Serial.write(error_code);
Serial.write(FEND);
}
void kiss_indicate_radiostate() {
Serial.write(FEND);
Serial.write(CMD_RADIO_STATE);
Serial.write(radio_online);
Serial.write(FEND);
}
void kiss_indicate_stat_rx() {
Serial.write(FEND);
Serial.write(CMD_STAT_RX);
escapedSerialWrite(stat_rx>>24);
escapedSerialWrite(stat_rx>>16);
escapedSerialWrite(stat_rx>>8);
escapedSerialWrite(stat_rx);
Serial.write(FEND);
}
void kiss_indicate_stat_tx() {
Serial.write(FEND);
Serial.write(CMD_STAT_TX);
escapedSerialWrite(stat_tx>>24);
escapedSerialWrite(stat_tx>>16);
escapedSerialWrite(stat_tx>>8);
escapedSerialWrite(stat_tx);
Serial.write(FEND);
}
void kiss_indicate_stat_rssi() {
uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset);
Serial.write(FEND);
Serial.write(CMD_STAT_RSSI);
escapedSerialWrite(packet_rssi_val);
Serial.write(FEND);
}
void kiss_indicate_stat_snr() {
Serial.write(FEND);
Serial.write(CMD_STAT_SNR);
escapedSerialWrite(last_snr_raw);
Serial.write(FEND);
}
void kiss_indicate_radio_lock() {
Serial.write(FEND);
Serial.write(CMD_RADIO_LOCK);
Serial.write(radio_locked);
Serial.write(FEND);
}
void kiss_indicate_spreadingfactor() {
Serial.write(FEND);
Serial.write(CMD_SF);
Serial.write((uint8_t)lora_sf);
Serial.write(FEND);
}
void kiss_indicate_codingrate() {
Serial.write(FEND);
Serial.write(CMD_CR);
Serial.write((uint8_t)lora_cr);
Serial.write(FEND);
}
void kiss_indicate_implicit_length() {
Serial.write(FEND);
Serial.write(CMD_IMPLICIT);
Serial.write(implicit_l);
Serial.write(FEND);
}
void kiss_indicate_txpower() {
Serial.write(FEND);
Serial.write(CMD_TXPOWER);
Serial.write((uint8_t)lora_txp);
Serial.write(FEND);
}
void kiss_indicate_bandwidth() {
Serial.write(FEND);
Serial.write(CMD_BANDWIDTH);
escapedSerialWrite(lora_bw>>24);
escapedSerialWrite(lora_bw>>16);
escapedSerialWrite(lora_bw>>8);
escapedSerialWrite(lora_bw);
Serial.write(FEND);
}
void kiss_indicate_frequency() {
Serial.write(FEND);
Serial.write(CMD_FREQUENCY);
escapedSerialWrite(lora_freq>>24);
escapedSerialWrite(lora_freq>>16);
escapedSerialWrite(lora_freq>>8);
escapedSerialWrite(lora_freq);
Serial.write(FEND);
}
void kiss_indicate_random(uint8_t byte) {
Serial.write(FEND);
Serial.write(CMD_RANDOM);
Serial.write(byte);
Serial.write(FEND);
}
void kiss_indicate_ready() {
Serial.write(FEND);
Serial.write(CMD_READY);
Serial.write(0x01);
Serial.write(FEND);
}
void kiss_indicate_not_ready() {
Serial.write(FEND);
Serial.write(CMD_READY);
Serial.write(0x00);
Serial.write(FEND);
}
void kiss_indicate_promisc() {
Serial.write(FEND);
Serial.write(CMD_PROMISC);
if (promisc) {
Serial.write(0x01);
} else {
Serial.write(0x00);
}
Serial.write(FEND);
}
void kiss_indicate_detect() {
Serial.write(FEND);
Serial.write(CMD_DETECT);
Serial.write(DETECT_RESP);
Serial.write(FEND);
}
void kiss_indicate_version() {
Serial.write(FEND);
Serial.write(CMD_FW_VERSION);
Serial.write(MAJ_VERS);
Serial.write(MIN_VERS);
Serial.write(FEND);
}
void kiss_indicate_platform() {
Serial.write(FEND);
Serial.write(CMD_PLATFORM);
Serial.write(PLATFORM);
Serial.write(FEND);
}
void kiss_indicate_board() {
Serial.write(FEND);
Serial.write(CMD_BOARD);
Serial.write(BOARD_MODEL);
Serial.write(FEND);
}
void kiss_indicate_mcu() {
Serial.write(FEND);
Serial.write(CMD_MCU);
Serial.write(MCU_VARIANT);
Serial.write(FEND);
}
inline bool isSplitPacket(uint8_t header) {
return (header & FLAG_SPLIT);
}
inline uint8_t packetSequence(uint8_t header) {
return header >> 4;
}
void setSpreadingFactor() {
if (radio_online) LoRa.setSpreadingFactor(lora_sf);
}
void setCodingRate() {
if (radio_online) LoRa.setCodingRate4(lora_cr);
}
void set_implicit_length(uint8_t len) {
implicit_l = len;
if (implicit_l != 0) {
implicit = true;
} else {
implicit = false;
}
}
void setTXPower() {
if (radio_online) {
if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
}
}
void getBandwidth() {
if (radio_online) {
lora_bw = LoRa.getSignalBandwidth();
}
}
void setBandwidth() {
if (radio_online) {
LoRa.setSignalBandwidth(lora_bw);
getBandwidth();
}
}
void getFrequency() {
if (radio_online) {
lora_freq = LoRa.getFrequency();
}
}
void setFrequency() {
if (radio_online) {
LoRa.setFrequency(lora_freq);
getFrequency();
}
}
uint8_t getRandom() {
if (radio_online) {
return LoRa.random();
} else {
return 0x00;
}
}
void promisc_enable() {
promisc = true;
}
void promisc_disable() {
promisc = false;
}
uint8_t eeprom_read(uint8_t addr) {
#if MCU_VARIANT == MCU_LINUX
return 0;
#else
return EEPROM.read(eeprom_addr(addr));
#endif
}
bool eeprom_info_locked() {
uint8_t lock_byte = eeprom_read(ADDR_INFO_LOCK);
if (lock_byte == INFO_LOCK_BYTE) {
return true;
} else {
return false;
}
}
void eeprom_update(int mapped_addr, uint8_t byte) {
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
EEPROM.update(mapped_addr, byte);
#elif MCU_VARIANT == MCU_ESP32
if (EEPROM.read(mapped_addr) != byte) {
EEPROM.write(mapped_addr, byte);
EEPROM.commit();
}
#endif
}
void eeprom_write(uint8_t addr, uint8_t byte) {
if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) {
eeprom_update(eeprom_addr(addr), byte);
} else {
kiss_indicate_error(ERROR_EEPROM_LOCKED);
}
}
void eeprom_erase() {
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
eeprom_update(eeprom_addr(addr), 0xFF);
}
hard_reset();
}
void eeprom_dump_info() {
for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
uint8_t byte = eeprom_read(addr);
escapedSerialWrite(byte);
}
}
void eeprom_dump_config() {
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
uint8_t byte = eeprom_read(addr);
escapedSerialWrite(byte);
}
}
void eeprom_dump_all() {
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
uint8_t byte = eeprom_read(addr);
escapedSerialWrite(byte);
}
}
void kiss_dump_eeprom() {
Serial.write(FEND);
Serial.write(CMD_ROM_READ);
eeprom_dump_all();
Serial.write(FEND);
}
bool eeprom_product_valid() {
uint8_t rval = eeprom_read(ADDR_PRODUCT);
#if PLATFORM == PLATFORM_AVR
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) {
#elif PLATFORM == PLATFORM_ESP32
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21) {
#else
if (false) {
#endif
return true;
} else {
return false;
}
}
bool eeprom_model_valid() {
model = eeprom_read(ADDR_MODEL);
#if BOARD_MODEL == BOARD_RNODE
if (model == MODEL_A4 || model == MODEL_A9) {
#elif BOARD_MODEL == BOARD_HMBRW
if (model == MODEL_FF) {
#elif BOARD_MODEL == BOARD_TBEAM
if (model == MODEL_E4 || model == MODEL_E9) {
#elif BOARD_MODEL == BOARD_LORA32_V2_0
if (model == MODEL_B3 || model == MODEL_B8) {
#elif BOARD_MODEL == BOARD_LORA32_V2_1
if (model == MODEL_B4 || model == MODEL_B9) {
#elif BOARD_MODEL == BOARD_HUZZAH32
if (model == MODEL_FF) {
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
if (model == MODEL_FF) {
#else
if (false) {
#endif
return true;
} else {
return false;
}
}
bool eeprom_hwrev_valid() {
hwrev = eeprom_read(ADDR_HW_REV);
if (hwrev != 0x00 && hwrev != 0xFF) {
return true;
} else {
return false;
}
}
bool eeprom_checksum_valid() {
char *data = (char*)malloc(CHECKSUMMED_SIZE);
for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) {
char byte = eeprom_read(i);
data[i] = byte;
}
unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE);
bool checksum_valid = true;
for (uint8_t i = 0; i < 16; i++) {
uint8_t stored_chk_byte = eeprom_read(ADDR_CHKSUM+i);
uint8_t calced_chk_byte = (uint8_t)hash[i];
if (stored_chk_byte != calced_chk_byte) {
checksum_valid = false;
}
}
free(hash);
free(data);
return checksum_valid;
}
bool eeprom_have_conf() {
if (eeprom_read(ADDR_CONF_OK) == CONF_OK_BYTE) {
return true;
} else {
return false;
}
}
void eeprom_conf_load() {
if (eeprom_have_conf()) {
lora_sf = eeprom_read(ADDR_CONF_SF);
lora_cr = eeprom_read(ADDR_CONF_CR);
lora_txp = eeprom_read(ADDR_CONF_TXP);
lora_freq = (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x03);
lora_bw = (uint32_t)eeprom_read(ADDR_CONF_BW+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x03);
}
}
void eeprom_conf_save() {
if (hw_ready && radio_online) {
eeprom_update(eeprom_addr(ADDR_CONF_SF), lora_sf);
eeprom_update(eeprom_addr(ADDR_CONF_CR), lora_cr);
eeprom_update(eeprom_addr(ADDR_CONF_TXP), lora_txp);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x00, lora_bw>>24);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x01, lora_bw>>16);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x02, lora_bw>>8);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x03, lora_bw);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x00, lora_freq>>24);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x01, lora_freq>>16);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x02, lora_freq>>8);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x03, lora_freq);
eeprom_update(eeprom_addr(ADDR_CONF_OK), CONF_OK_BYTE);
led_indicate_info(10);
} else {
led_indicate_warning(10);
}
}
void eeprom_conf_delete() {
eeprom_update(eeprom_addr(ADDR_CONF_OK), 0x00);
}
void unlock_rom() {
led_indicate_error(50);
eeprom_erase();
}
typedef struct FIFOBuffer
{
unsigned char *begin;
unsigned char *end;
unsigned char * volatile head;
unsigned char * volatile tail;
} FIFOBuffer;
inline bool fifo_isempty(const FIFOBuffer *f) {
return f->head == f->tail;
}
inline bool fifo_isfull(const FIFOBuffer *f) {
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
}
inline void fifo_push(FIFOBuffer *f, unsigned char c) {
*(f->tail) = c;
if (f->tail == f->end) {
f->tail = f->begin;
} else {
f->tail++;
}
}
inline unsigned char fifo_pop(FIFOBuffer *f) {
if(f->head == f->end) {
f->head = f->begin;
return *(f->end);
} else {
return *(f->head++);
}
}
inline void fifo_flush(FIFOBuffer *f) {
f->head = f->tail;
}
#if SERIAL_EVENTS == SERIAL_INTERRUPT
static inline bool fifo_isempty_locked(const FIFOBuffer *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo_isempty(f);
}
return result;
}
static inline bool fifo_isfull_locked(const FIFOBuffer *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo_isfull(f);
}
return result;
}
static inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
fifo_push(f, c);
}
}
#endif
/*
static inline unsigned char fifo_pop_locked(FIFOBuffer *f) {
unsigned char c;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
c = fifo_pop(f);
}
return c;
}
*/
inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) {
f->head = f->tail = f->begin = buffer;
f->end = buffer + size;
}
inline size_t fifo_len(FIFOBuffer *f) {
return f->end - f->begin;
}
typedef struct FIFOBuffer16
{
uint16_t *begin;
uint16_t *end;
uint16_t * volatile head;
uint16_t * volatile tail;
} FIFOBuffer16;
inline bool fifo16_isempty(const FIFOBuffer16 *f) {
return f->head == f->tail;
}
inline bool fifo16_isfull(const FIFOBuffer16 *f) {
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
}
inline void fifo16_push(FIFOBuffer16 *f, uint16_t c) {
*(f->tail) = c;
if (f->tail == f->end) {
f->tail = f->begin;
} else {
f->tail++;
}
}
inline uint16_t fifo16_pop(FIFOBuffer16 *f) {
if(f->head == f->end) {
f->head = f->begin;
return *(f->end);
} else {
return *(f->head++);
}
}
inline void fifo16_flush(FIFOBuffer16 *f) {
f->head = f->tail;
}
#if SERIAL_EVENTS == SERIAL_INTERRUPT
static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo16_isempty(f);
}
return result;
}
#endif
/*
static inline bool fifo16_isfull_locked(const FIFOBuffer16 *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo16_isfull(f);
}
return result;
}
static inline void fifo16_push_locked(FIFOBuffer16 *f, uint16_t c) {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
fifo16_push(f, c);
}
}
static inline size_t fifo16_pop_locked(FIFOBuffer16 *f) {
size_t c;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
c = fifo16_pop(f);
}
return c;
}
*/
inline void fifo16_init(FIFOBuffer16 *f, uint16_t *buffer, uint16_t size) {
f->head = f->tail = f->begin = buffer;
f->end = buffer + size;
}
inline uint16_t fifo16_len(FIFOBuffer16 *f) {
return (f->end - f->begin);
}
#if BOARD_MODEL == BOARD_TBEAM
#include <axp20x.h>
AXP20X_Class PMU;
bool initPMU()
{
if (PMU.begin(Wire, AXP192_SLAVE_ADDRESS) == AXP_FAIL) {
return false;
}
/*
* The charging indicator can be turned on or off
* * * */
PMU.setChgLEDMode(AXP20X_LED_OFF);
/*
* The default ESP32 power supply has been turned on,
* no need to set, please do not set it, if it is turned off,
* it will not be able to program
*
* PMU.setDCDC3Voltage(3300);
* PMU.setPowerOutPut(AXP192_DCDC3, AXP202_ON);
*
* * * */
/*
* Turn off unused power sources to save power
* **/
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
PMU.setPowerOutPut(AXP192_DCDC2, AXP202_OFF);
PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
PMU.setPowerOutPut(AXP192_EXTEN, AXP202_OFF);
/*
* Set the power of LoRa and GPS module to 3.3V
**/
PMU.setLDO2Voltage(3300); //LoRa VDD
PMU.setLDO3Voltage(3300); //GPS VDD
PMU.setDCDC1Voltage(3300); //3.3V Pin next to 21 and 22 is controlled by DCDC1
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_ON);
// Turn on SX1276
PMU.setPowerOutPut(AXP192_LDO2, AXP202_ON);
// Turn off GPS
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
pinMode(PMU_IRQ, INPUT_PULLUP);
attachInterrupt(PMU_IRQ, [] {
// pmu_irq = true;
}, FALLING);
PMU.adc1Enable(AXP202_VBUS_VOL_ADC1 |
AXP202_VBUS_CUR_ADC1 |
AXP202_BATT_CUR_ADC1 |
AXP202_BATT_VOL_ADC1,
AXP202_ON);
PMU.enableIRQ(AXP202_VBUS_REMOVED_IRQ |
AXP202_VBUS_CONNECT_IRQ |
AXP202_BATT_REMOVED_IRQ |
AXP202_BATT_CONNECT_IRQ,
AXP202_ON);
PMU.clearIRQ();
return true;
}
void disablePeripherals()
{
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
}
#endif