#if LIBRARY_TYPE == LIBRARY_ARDUINO #include #endif #include #include "Config.h" #include "LoRa.h" #include "ROM.h" #include "Framing.h" #include "MD5.h" #if LIBRARY_TYPE == LIBRARY_C #include // We need a delay() void delay(int ms) { struct timespec interval; interval.tv_sec = ms / 1000; interval.tv_nsec = (ms % 1000) * 1000 * 1000; // TODO: handle signals interrupting sleep nanosleep(&interval, NULL); } // And millis() struct timespec millis_base; uint32_t millis() { // Time since first call is close enough. static bool base_set(false); if (!base_set) { if (clock_gettime(CLOCK_MONOTONIC, &millis_base)) { exit(1); } base_set = true; } struct timespec now; if (clock_gettime(CLOCK_MONOTONIC, &now)) { exit(1); } return (now.tv_sec - millis_base.tv_sec) * 1000 + (now.tv_nsec - millis_base.tv_nsec)/(1000*1000); } // We also need a Serial class SerialClass { public: const char* fifoPath = "rnode_socket"; void begin(int baud) { int status = mkfifo(fifoPath, 0666); if (status) { perror("Making fifo failed"); exit(1); } // TODO: Need a bidirectional thing here: openpty??? _fd = open(fifoPath, O_RDWR); if (_fd < 0) { perror("could not open fifo"); exit(1); } } // Be truthy if connected operator bool() { return _fd > 0; } void write(int b) { ssize_t written = ::write(_fd, } void write(const char* data) { throw std::runtime_error("Unimplemented"); } bool available() { throw std::runtime_error("Unimplemented"); } uint8_t read() { throw std::runtime_error("Unimplemented"); } protected: int _fd = -1; }; SerialClass Serial; // And random(below); int random(int below) { return rand() % below; } #endif #if MCU_VARIANT == MCU_ESP32 #include "soc/rtc_wdt.h" #define ISR_VECT IRAM_ATTR #else #define ISR_VECT #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #include #include #endif uint8_t boot_vector = 0x00; #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 uint8_t OPTIBOOT_MCUSR __attribute__ ((section(".noinit"))); void resetFlagsInit(void) __attribute__ ((naked)) __attribute__ ((used)) __attribute__ ((section (".init0"))); void resetFlagsInit(void) { __asm__ __volatile__ ("sts %0, r2\n" : "=m" (OPTIBOOT_MCUSR) :); } #elif MCU_VARIANT == MCU_ESP32 // TODO: Get ESP32 boot flags #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif MCU_VARIANT == MCU_ESP32 #if BOARD_MODEL == BOARD_TBEAM void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, LOW); } void led_tx_off() { digitalWrite(pin_led_tx, HIGH); } #elif BOARD_MODEL == BOARD_LORA32_V2_0 #if defined(EXTERNAL_LEDS) void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #else void led_rx_on() { digitalWrite(pin_led_rx, LOW); } void led_rx_off() { digitalWrite(pin_led_rx, HIGH); } void led_tx_on() { digitalWrite(pin_led_tx, LOW); } void led_tx_off() { digitalWrite(pin_led_tx, HIGH); } #endif #elif BOARD_MODEL == BOARD_LORA32_V2_1 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_HUZZAH32 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_GENERIC_ESP32 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #endif #elif MCU_VARIANT == MCU_LINUX #if BOARD_MODEL == BOARD_SPIDEV // No LEDs on this board. SPI only. void led_rx_on() { } void led_rx_off() { } void led_tx_on() { } void led_tx_off() { } #endif #endif void hard_reset(void) { #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 wdt_enable(WDTO_15MS); while(true) { led_tx_on(); led_rx_off(); } #elif MCU_VARIANT == MCU_ESP32 ESP.restart(); #elif MCU_VARIANT == MCU_LINUX // TODO: re-exec ourselves? // For now just quit. exit(0); #endif } void led_indicate_error(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_rx_on(); led_tx_off(); delay(100); led_rx_off(); led_tx_on(); delay(100); if (!forever) cycles--; } led_rx_off(); led_tx_off(); } void led_indicate_boot_error() { while (true) { led_tx_on(); led_rx_off(); delay(10); led_rx_on(); led_tx_off(); delay(5); } } void led_indicate_warning(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; led_tx_on(); while(cycles > 0) { led_tx_off(); delay(100); led_tx_on(); delay(100); if (!forever) cycles--; } led_tx_off(); } #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_LINUX void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_rx_off(); delay(100); led_rx_on(); delay(100); if (!forever) cycles--; } led_rx_off(); } #elif MCU_VARIANT == MCU_ESP32 #if BOARD_MODEL == BOARD_LORA32_V2_1 void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_rx_off(); delay(100); led_rx_on(); delay(100); if (!forever) cycles--; } led_rx_off(); } #elif BOARD_MODEL == BOARD_LORA32_V2_0 void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_rx_off(); delay(100); led_rx_on(); delay(100); if (!forever) cycles--; } led_rx_off(); } #else void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_tx_off(); delay(100); led_tx_on(); delay(100); if (!forever) cycles--; } led_tx_off(); } #endif #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32 unsigned long led_standby_ticks = 0; #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 uint8_t led_standby_min = 1; uint8_t led_standby_max = 40; unsigned long led_standby_wait = 11000; #elif MCU_VARIANT == MCU_ESP32 uint8_t led_standby_min = 200; uint8_t led_standby_max = 255; uint8_t led_notready_min = 0; uint8_t led_notready_max = 255; uint8_t led_notready_value = led_notready_min; int8_t led_notready_direction = 0; unsigned long led_notready_ticks = 0; unsigned long led_standby_wait = 1768; unsigned long led_notready_wait = 150; #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32 uint8_t led_standby_value = led_standby_min; int8_t led_standby_direction = 0; #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 void led_indicate_standby() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } led_standby_value += led_standby_direction; analogWrite(pin_led_rx, led_standby_value); led_tx_off(); } } #elif MCU_VARIANT == MCU_ESP32 void led_indicate_standby() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } led_standby_value += led_standby_direction; if (led_standby_value > 253) { led_tx_on(); } else { led_tx_off(); } #if BOARD_MODEL == BOARD_LORA32_V2_1 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #elif BOARD_MODEL == BOARD_LORA32_V2_0 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #else led_rx_off(); #endif } } #elif MCU_VARIANT == MCU_LINUX // No LEDs available. void led_indicate_standby() {} #endif #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 void led_indicate_not_ready() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } led_standby_value += led_standby_direction; analogWrite(pin_led_tx, led_standby_value); led_rx_off(); } } #elif MCU_VARIANT == MCU_ESP32 void led_indicate_not_ready() { led_notready_ticks++; if (led_notready_ticks > led_notready_wait) { led_notready_ticks = 0; if (led_notready_value <= led_notready_min) { led_notready_direction = 1; } else if (led_notready_value >= led_notready_max) { led_notready_direction = -1; } led_notready_value += led_notready_direction; if (led_notready_value > 128) { led_tx_on(); } else { led_tx_off(); } #if BOARD_MODEL == BOARD_LORA32_V2_1 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #elif BOARD_MODEL == BOARD_LORA32_V2_0 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #else led_rx_off(); #endif } } #elif MCU_VARIANT == MCU_LINUX // No LEDs available. void led_indicate_not_ready() {} #endif void escapedSerialWrite(uint8_t byte) { if (byte == FEND) { Serial.write(FESC); byte = TFEND; } if (byte == FESC) { Serial.write(FESC); byte = TFESC; } Serial.write(byte); } void kiss_indicate_reset() { Serial.write(FEND); Serial.write(CMD_RESET); Serial.write(CMD_RESET_BYTE); Serial.write(FEND); } void kiss_indicate_error(uint8_t error_code) { Serial.write(FEND); Serial.write(CMD_ERROR); Serial.write(error_code); Serial.write(FEND); } void kiss_indicate_radiostate() { Serial.write(FEND); Serial.write(CMD_RADIO_STATE); Serial.write(radio_online); Serial.write(FEND); } void kiss_indicate_stat_rx() { Serial.write(FEND); Serial.write(CMD_STAT_RX); escapedSerialWrite(stat_rx>>24); escapedSerialWrite(stat_rx>>16); escapedSerialWrite(stat_rx>>8); escapedSerialWrite(stat_rx); Serial.write(FEND); } void kiss_indicate_stat_tx() { Serial.write(FEND); Serial.write(CMD_STAT_TX); escapedSerialWrite(stat_tx>>24); escapedSerialWrite(stat_tx>>16); escapedSerialWrite(stat_tx>>8); escapedSerialWrite(stat_tx); Serial.write(FEND); } void kiss_indicate_stat_rssi() { uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset); Serial.write(FEND); Serial.write(CMD_STAT_RSSI); escapedSerialWrite(packet_rssi_val); Serial.write(FEND); } void kiss_indicate_stat_snr() { Serial.write(FEND); Serial.write(CMD_STAT_SNR); escapedSerialWrite(last_snr_raw); Serial.write(FEND); } void kiss_indicate_radio_lock() { Serial.write(FEND); Serial.write(CMD_RADIO_LOCK); Serial.write(radio_locked); Serial.write(FEND); } void kiss_indicate_spreadingfactor() { Serial.write(FEND); Serial.write(CMD_SF); Serial.write((uint8_t)lora_sf); Serial.write(FEND); } void kiss_indicate_codingrate() { Serial.write(FEND); Serial.write(CMD_CR); Serial.write((uint8_t)lora_cr); Serial.write(FEND); } void kiss_indicate_implicit_length() { Serial.write(FEND); Serial.write(CMD_IMPLICIT); Serial.write(implicit_l); Serial.write(FEND); } void kiss_indicate_txpower() { Serial.write(FEND); Serial.write(CMD_TXPOWER); Serial.write((uint8_t)lora_txp); Serial.write(FEND); } void kiss_indicate_bandwidth() { Serial.write(FEND); Serial.write(CMD_BANDWIDTH); escapedSerialWrite(lora_bw>>24); escapedSerialWrite(lora_bw>>16); escapedSerialWrite(lora_bw>>8); escapedSerialWrite(lora_bw); Serial.write(FEND); } void kiss_indicate_frequency() { Serial.write(FEND); Serial.write(CMD_FREQUENCY); escapedSerialWrite(lora_freq>>24); escapedSerialWrite(lora_freq>>16); escapedSerialWrite(lora_freq>>8); escapedSerialWrite(lora_freq); Serial.write(FEND); } void kiss_indicate_random(uint8_t byte) { Serial.write(FEND); Serial.write(CMD_RANDOM); Serial.write(byte); Serial.write(FEND); } void kiss_indicate_ready() { Serial.write(FEND); Serial.write(CMD_READY); Serial.write(0x01); Serial.write(FEND); } void kiss_indicate_not_ready() { Serial.write(FEND); Serial.write(CMD_READY); Serial.write(0x00); Serial.write(FEND); } void kiss_indicate_promisc() { Serial.write(FEND); Serial.write(CMD_PROMISC); if (promisc) { Serial.write(0x01); } else { Serial.write(0x00); } Serial.write(FEND); } void kiss_indicate_detect() { Serial.write(FEND); Serial.write(CMD_DETECT); Serial.write(DETECT_RESP); Serial.write(FEND); } void kiss_indicate_version() { Serial.write(FEND); Serial.write(CMD_FW_VERSION); Serial.write(MAJ_VERS); Serial.write(MIN_VERS); Serial.write(FEND); } void kiss_indicate_platform() { Serial.write(FEND); Serial.write(CMD_PLATFORM); Serial.write(PLATFORM); Serial.write(FEND); } void kiss_indicate_board() { Serial.write(FEND); Serial.write(CMD_BOARD); Serial.write(BOARD_MODEL); Serial.write(FEND); } void kiss_indicate_mcu() { Serial.write(FEND); Serial.write(CMD_MCU); Serial.write(MCU_VARIANT); Serial.write(FEND); } inline bool isSplitPacket(uint8_t header) { return (header & FLAG_SPLIT); } inline uint8_t packetSequence(uint8_t header) { return header >> 4; } void setSpreadingFactor() { if (radio_online) LoRa.setSpreadingFactor(lora_sf); } void setCodingRate() { if (radio_online) LoRa.setCodingRate4(lora_cr); } void set_implicit_length(uint8_t len) { implicit_l = len; if (implicit_l != 0) { implicit = true; } else { implicit = false; } } void setTXPower() { if (radio_online) { if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); } } void getBandwidth() { if (radio_online) { lora_bw = LoRa.getSignalBandwidth(); } } void setBandwidth() { if (radio_online) { LoRa.setSignalBandwidth(lora_bw); getBandwidth(); } } void getFrequency() { if (radio_online) { lora_freq = LoRa.getFrequency(); } } void setFrequency() { if (radio_online) { LoRa.setFrequency(lora_freq); getFrequency(); } } uint8_t getRandom() { if (radio_online) { return LoRa.random(); } else { return 0x00; } } void promisc_enable() { promisc = true; } void promisc_disable() { promisc = false; } uint8_t eeprom_read(uint8_t addr) { #if MCU_VARIANT == MCU_LINUX return 0; #else return EEPROM.read(eeprom_addr(addr)); #endif } bool eeprom_info_locked() { uint8_t lock_byte = eeprom_read(ADDR_INFO_LOCK); if (lock_byte == INFO_LOCK_BYTE) { return true; } else { return false; } } void eeprom_update(int mapped_addr, uint8_t byte) { #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 EEPROM.update(mapped_addr, byte); #elif MCU_VARIANT == MCU_ESP32 if (EEPROM.read(mapped_addr) != byte) { EEPROM.write(mapped_addr, byte); EEPROM.commit(); } #endif } void eeprom_write(uint8_t addr, uint8_t byte) { if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) { eeprom_update(eeprom_addr(addr), byte); } else { kiss_indicate_error(ERROR_EEPROM_LOCKED); } } void eeprom_erase() { for (int addr = 0; addr < EEPROM_RESERVED; addr++) { eeprom_update(eeprom_addr(addr), 0xFF); } hard_reset(); } void eeprom_dump_info() { for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) { uint8_t byte = eeprom_read(addr); escapedSerialWrite(byte); } } void eeprom_dump_config() { for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) { uint8_t byte = eeprom_read(addr); escapedSerialWrite(byte); } } void eeprom_dump_all() { for (int addr = 0; addr < EEPROM_RESERVED; addr++) { uint8_t byte = eeprom_read(addr); escapedSerialWrite(byte); } } void kiss_dump_eeprom() { Serial.write(FEND); Serial.write(CMD_ROM_READ); eeprom_dump_all(); Serial.write(FEND); } bool eeprom_product_valid() { uint8_t rval = eeprom_read(ADDR_PRODUCT); #if PLATFORM == PLATFORM_AVR if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) { #elif PLATFORM == PLATFORM_ESP32 if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21) { #else if (false) { #endif return true; } else { return false; } } bool eeprom_model_valid() { model = eeprom_read(ADDR_MODEL); #if BOARD_MODEL == BOARD_RNODE if (model == MODEL_A4 || model == MODEL_A9) { #elif BOARD_MODEL == BOARD_HMBRW if (model == MODEL_FF) { #elif BOARD_MODEL == BOARD_TBEAM if (model == MODEL_E4 || model == MODEL_E9) { #elif BOARD_MODEL == BOARD_LORA32_V2_0 if (model == MODEL_B3 || model == MODEL_B8) { #elif BOARD_MODEL == BOARD_LORA32_V2_1 if (model == MODEL_B4 || model == MODEL_B9) { #elif BOARD_MODEL == BOARD_HUZZAH32 if (model == MODEL_FF) { #elif BOARD_MODEL == BOARD_GENERIC_ESP32 if (model == MODEL_FF) { #else if (false) { #endif return true; } else { return false; } } bool eeprom_hwrev_valid() { hwrev = eeprom_read(ADDR_HW_REV); if (hwrev != 0x00 && hwrev != 0xFF) { return true; } else { return false; } } bool eeprom_checksum_valid() { char *data = (char*)malloc(CHECKSUMMED_SIZE); for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) { char byte = eeprom_read(i); data[i] = byte; } unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE); bool checksum_valid = true; for (uint8_t i = 0; i < 16; i++) { uint8_t stored_chk_byte = eeprom_read(ADDR_CHKSUM+i); uint8_t calced_chk_byte = (uint8_t)hash[i]; if (stored_chk_byte != calced_chk_byte) { checksum_valid = false; } } free(hash); free(data); return checksum_valid; } bool eeprom_have_conf() { if (eeprom_read(ADDR_CONF_OK) == CONF_OK_BYTE) { return true; } else { return false; } } void eeprom_conf_load() { if (eeprom_have_conf()) { lora_sf = eeprom_read(ADDR_CONF_SF); lora_cr = eeprom_read(ADDR_CONF_CR); lora_txp = eeprom_read(ADDR_CONF_TXP); lora_freq = (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x03); lora_bw = (uint32_t)eeprom_read(ADDR_CONF_BW+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x03); } } void eeprom_conf_save() { if (hw_ready && radio_online) { eeprom_update(eeprom_addr(ADDR_CONF_SF), lora_sf); eeprom_update(eeprom_addr(ADDR_CONF_CR), lora_cr); eeprom_update(eeprom_addr(ADDR_CONF_TXP), lora_txp); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x00, lora_bw>>24); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x01, lora_bw>>16); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x02, lora_bw>>8); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x03, lora_bw); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x00, lora_freq>>24); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x01, lora_freq>>16); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x02, lora_freq>>8); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x03, lora_freq); eeprom_update(eeprom_addr(ADDR_CONF_OK), CONF_OK_BYTE); led_indicate_info(10); } else { led_indicate_warning(10); } } void eeprom_conf_delete() { eeprom_update(eeprom_addr(ADDR_CONF_OK), 0x00); } void unlock_rom() { led_indicate_error(50); eeprom_erase(); } typedef struct FIFOBuffer { unsigned char *begin; unsigned char *end; unsigned char * volatile head; unsigned char * volatile tail; } FIFOBuffer; inline bool fifo_isempty(const FIFOBuffer *f) { return f->head == f->tail; } inline bool fifo_isfull(const FIFOBuffer *f) { return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1); } inline void fifo_push(FIFOBuffer *f, unsigned char c) { *(f->tail) = c; if (f->tail == f->end) { f->tail = f->begin; } else { f->tail++; } } inline unsigned char fifo_pop(FIFOBuffer *f) { if(f->head == f->end) { f->head = f->begin; return *(f->end); } else { return *(f->head++); } } inline void fifo_flush(FIFOBuffer *f) { f->head = f->tail; } #if SERIAL_EVENTS == SERIAL_INTERRUPT static inline bool fifo_isempty_locked(const FIFOBuffer *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo_isempty(f); } return result; } static inline bool fifo_isfull_locked(const FIFOBuffer *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo_isfull(f); } return result; } static inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) { ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { fifo_push(f, c); } } #endif /* static inline unsigned char fifo_pop_locked(FIFOBuffer *f) { unsigned char c; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { c = fifo_pop(f); } return c; } */ inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) { f->head = f->tail = f->begin = buffer; f->end = buffer + size; } inline size_t fifo_len(FIFOBuffer *f) { return f->end - f->begin; } typedef struct FIFOBuffer16 { uint16_t *begin; uint16_t *end; uint16_t * volatile head; uint16_t * volatile tail; } FIFOBuffer16; inline bool fifo16_isempty(const FIFOBuffer16 *f) { return f->head == f->tail; } inline bool fifo16_isfull(const FIFOBuffer16 *f) { return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1); } inline void fifo16_push(FIFOBuffer16 *f, uint16_t c) { *(f->tail) = c; if (f->tail == f->end) { f->tail = f->begin; } else { f->tail++; } } inline uint16_t fifo16_pop(FIFOBuffer16 *f) { if(f->head == f->end) { f->head = f->begin; return *(f->end); } else { return *(f->head++); } } inline void fifo16_flush(FIFOBuffer16 *f) { f->head = f->tail; } #if SERIAL_EVENTS == SERIAL_INTERRUPT static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo16_isempty(f); } return result; } #endif /* static inline bool fifo16_isfull_locked(const FIFOBuffer16 *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo16_isfull(f); } return result; } static inline void fifo16_push_locked(FIFOBuffer16 *f, uint16_t c) { ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { fifo16_push(f, c); } } static inline size_t fifo16_pop_locked(FIFOBuffer16 *f) { size_t c; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { c = fifo16_pop(f); } return c; } */ inline void fifo16_init(FIFOBuffer16 *f, uint16_t *buffer, uint16_t size) { f->head = f->tail = f->begin = buffer; f->end = buffer + size; } inline uint16_t fifo16_len(FIFOBuffer16 *f) { return (f->end - f->begin); } #if BOARD_MODEL == BOARD_TBEAM #include AXP20X_Class PMU; bool initPMU() { if (PMU.begin(Wire, AXP192_SLAVE_ADDRESS) == AXP_FAIL) { return false; } /* * The charging indicator can be turned on or off * * * */ PMU.setChgLEDMode(AXP20X_LED_OFF); /* * The default ESP32 power supply has been turned on, * no need to set, please do not set it, if it is turned off, * it will not be able to program * * PMU.setDCDC3Voltage(3300); * PMU.setPowerOutPut(AXP192_DCDC3, AXP202_ON); * * * * */ /* * Turn off unused power sources to save power * **/ PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); PMU.setPowerOutPut(AXP192_DCDC2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); PMU.setPowerOutPut(AXP192_EXTEN, AXP202_OFF); /* * Set the power of LoRa and GPS module to 3.3V **/ PMU.setLDO2Voltage(3300); //LoRa VDD PMU.setLDO3Voltage(3300); //GPS VDD PMU.setDCDC1Voltage(3300); //3.3V Pin next to 21 and 22 is controlled by DCDC1 PMU.setPowerOutPut(AXP192_DCDC1, AXP202_ON); // Turn on SX1276 PMU.setPowerOutPut(AXP192_LDO2, AXP202_ON); // Turn off GPS PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); pinMode(PMU_IRQ, INPUT_PULLUP); attachInterrupt(PMU_IRQ, [] { // pmu_irq = true; }, FALLING); PMU.adc1Enable(AXP202_VBUS_VOL_ADC1 | AXP202_VBUS_CUR_ADC1 | AXP202_BATT_CUR_ADC1 | AXP202_BATT_VOL_ADC1, AXP202_ON); PMU.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ | AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ, AXP202_ON); PMU.clearIRQ(); return true; } void disablePeripherals() { PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); } #endif