Get build building

This commit is contained in:
Adam Novak 2022-02-13 20:20:21 -05:00
parent c46ec5778d
commit d01a4b293f
6 changed files with 223 additions and 121 deletions

View File

@ -17,29 +17,12 @@
#define BOARD_LORA32_V2_1 0x37 #define BOARD_LORA32_V2_1 0x37
#define BOARD_SPIDEV 0x38 #define BOARD_SPIDEV 0x38
#define SERIAL_INTERRUPT 0x1
#define SERIAL_POLLING 0x2
#define MODE_HOST 0x11 #define MODE_HOST 0x11
#define MODE_TNC 0x12 #define MODE_TNC 0x12
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#define LIBRARY_TYPE LIBRARY_ARDUINO
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#define LIBRARY_TYPE LIBRARY_ARDUINO
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#define LIBRARY_TYPE LIBRARY_ARDUINO
#elif defined(__unix__)
#define PLATFORM PLATFORM_LINUX
#define MCU_VARIANT MCU_LINUX
#define LIBRARY_TYPE LIBRARY_C
#else
#error "The firmware cannot be compiled for the selected MCU variant"
#endif
#define MTU 500 #define MTU 500
#define SINGLE_MTU 255 #define SINGLE_MTU 255
#define HEADER_L 1 #define HEADER_L 1
@ -57,6 +40,7 @@
const int pin_led_tx = 13; const int pin_led_tx = 13;
#define BOARD_MODEL BOARD_RNODE #define BOARD_MODEL BOARD_RNODE
#define SERIAL_EVENTS SERIAL_INTERRUPT
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144 #define CONFIG_QUEUE_SIZE 6144
@ -73,6 +57,7 @@
const int pin_led_tx = 13; const int pin_led_tx = 13;
#define BOARD_MODEL BOARD_HMBRW #define BOARD_MODEL BOARD_HMBRW
#define SERIAL_EVENTS SERIAL_INTERRUPT
#define CONFIG_UART_BUFFER_SIZE 768 #define CONFIG_UART_BUFFER_SIZE 768
#define CONFIG_QUEUE_SIZE 5120 #define CONFIG_QUEUE_SIZE 5120
@ -134,6 +119,8 @@
#error An unsupported board was selected. Cannot compile RNode firmware. #error An unsupported board was selected. Cannot compile RNode firmware.
#endif #endif
#define SERIAL_EVENTS SERIAL_POLLING
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144 #define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200 #define CONFIG_QUEUE_MAX_LENGTH 200
@ -152,6 +139,7 @@
const int pin_led_tx = -1; const int pin_led_tx = -1;
#define BOARD_MODEL BOARD_SPIDEV #define BOARD_MODEL BOARD_SPIDEV
#define SERIAL_EVENTS SERIAL_POLLING
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144 #define CONFIG_QUEUE_SIZE 6144

View File

@ -207,7 +207,7 @@ int LoRaClass::endPacket()
#if LIBRARY_TYPE == LIBRARY_ARDUINO #if LIBRARY_TYPE == LIBRARY_ARDUINO
yield(); yield();
#elif LIBRARY_TYPE == LIBRARY_C #elif LIBRARY_TYPE == LIBRARY_C
::sleep(1); ::sleep(0);
#endif #endif
} }

8
MD5.h
View File

@ -1,13 +1,7 @@
#ifndef MD5_h #ifndef MD5_h
#define MD5_h #define MD5_h
#include "Config.h" #include "Platform.h"
#if LIBRARY_TYPE == LIBRARY_ARDUINO
#include "Arduino.h"
#elif LIBRARY_TYPE == LIBRARY_C
#include <cstdlib>
#endif
/* /*
* This is an OpenSSL-compatible implementation of the RSA Data Security, * This is an OpenSSL-compatible implementation of the RSA Data Security,

View File

@ -10,11 +10,6 @@ prep-samd:
arduino-cli core update-index --config-file arduino-cli.yaml arduino-cli core update-index --config-file arduino-cli.yaml
arduino-cli core install adafruit:samd arduino-cli core install adafruit:samd
prep-linux:
mkdir -p bin
mkdir -p obj
firmware: firmware:
arduino-cli compile --fqbn unsignedio:avr:rnode arduino-cli compile --fqbn unsignedio:avr:rnode
@ -139,18 +134,22 @@ release-mega2560:
cp build/arduino.avr.mega/RNode_Firmware.ino.hex Release/rnode_firmware_latest_m2560.hex cp build/arduino.avr.mega/RNode_Firmware.ino.hex Release/rnode_firmware_latest_m2560.hex
rm -r build rm -r build
.PHONY: clean prep-linux
clean: clean:
rm -Rf bin rm -Rf bin
rm -Rf obj rm -Rf obj
obj/MD5.o: MD5.cpp MD5.h Config.h ROM.h Platform.h prep-linux obj/MD5.o: MD5.cpp MD5.h Platform.h
mkdir -p obj
$(CC) -c -o $@ $< $(CC) -c -o $@ $<
obj/LoRa.o: LoRa.cpp LoRa.h Platform.h prep-linux obj/LoRa.o: LoRa.cpp LoRa.h Platform.h
mkdir -p obj
$(CC) -c -o $@ $< $(CC) -c -o $@ $<
obj/RNode_firmware.o: RNode_firmware.ino Utilities.h Config.h LoRa.h ROM.h Framing.h MD5.h Platform.h prep-linux obj/RNode_Firmware.o: RNode_Firmware.ino Utilities.h Config.h LoRa.h ROM.h Framing.h MD5.h Platform.h
$(CC) -c -o $@ $< mkdir -p obj
$(CC) -c -o $@ -x c++ $<
bin/rnode: obj/RNode_Firmware.o obj/LoRa.o obj/MD5.o
mkdir -p bin
$(CC) -o $@ $^ -lstdc++

View File

@ -20,8 +20,12 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE. // SOFTWARE.
#include <Arduino.h> #include "Platform.h"
#include <SPI.h>
#if LIBRARY_TYPE == LIBRARY_ARDUINO
#include <Arduino.h>
#include <SPI.h>
#endif
#include "Utilities.h" #include "Utilities.h"
FIFOBuffer serialFIFO; FIFOBuffer serialFIFO;
@ -47,6 +51,16 @@ char sbuf[128];
bool packet_ready = false; bool packet_ready = false;
#endif #endif
// Arduino C doesn't need pre-declarations to call functions that appear later,
// but standard C does.
void serial_interrupt_init();
void validateStatus();
void update_radio_lock();
void transmit(uint16_t size);
void buffer_serial();
void serial_poll();
void setup() { void setup() {
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
delay(500); delay(500);
@ -54,8 +68,10 @@ void setup() {
Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE); Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE);
#endif #endif
// Seed the PRNG #if LIBRARY_TYPE == LIBRARY_ARDUINO
randomSeed(analogRead(0)); // Seed the PRNG
randomSeed(analogRead(0));
#endif
// Initialise serial communication // Initialise serial communication
memset(serialBuffer, 0, sizeof(serialBuffer)); memset(serialBuffer, 0, sizeof(serialBuffer));
@ -66,9 +82,11 @@ void setup() {
serial_interrupt_init(); serial_interrupt_init();
// Configure input and output pins #if LIBRARY_TYPE == LIBRARY_ARDUINO
pinMode(pin_led_rx, OUTPUT); // Configure input and output pins
pinMode(pin_led_tx, OUTPUT); pinMode(pin_led_rx, OUTPUT);
pinMode(pin_led_tx, OUTPUT);
#endif
// Initialise buffers // Initialise buffers
memset(pbuf, 0, sizeof(pbuf)); memset(pbuf, 0, sizeof(pbuf));
@ -318,7 +336,7 @@ void flushQueue(void) {
uint16_t processed = 0; uint16_t processed = 0;
#if MCU_VARIANT == MCU_ESP32 #if SERIAL_EVENTS == SERIAL_POLLING
while (!fifo16_isempty(&packet_starts)) { while (!fifo16_isempty(&packet_starts)) {
#else #else
while (!fifo16_isempty_locked(&packet_starts)) { while (!fifo16_isempty_locked(&packet_starts)) {
@ -683,13 +701,19 @@ void validateStatus() {
uint8_t F_WDR = WDRF; uint8_t F_WDR = WDRF;
#elif MCU_VARIANT == MCU_2560 #elif MCU_VARIANT == MCU_2560
uint8_t boot_flags = OPTIBOOT_MCUSR; uint8_t boot_flags = OPTIBOOT_MCUSR;
if (boot_flags == 0x00) boot_flags = 0x03; if (boot_flags == 0x00) boot_flags = START_FROM_BROWNOUT;
uint8_t F_POR = PORF; uint8_t F_POR = PORF;
uint8_t F_BOR = BORF; uint8_t F_BOR = BORF;
uint8_t F_WDR = WDRF; uint8_t F_WDR = WDRF;
#elif MCU_VARIANT == MCU_ESP32 #elif MCU_VARIANT == MCU_ESP32
// TODO: Get ESP32 boot flags // TODO: Get ESP32 boot flags
uint8_t boot_flags = 0x02; uint8_t boot_flags = START_FROM_POWERON;
uint8_t F_POR = 0x00;
uint8_t F_BOR = 0x00;
uint8_t F_WDR = 0x01;
#elif MCU_VARIANT == MCU_LINUX
// Linux build always works like a clean boot.
uint8_t boot_flags = START_FROM_POWERON;
uint8_t F_POR = 0x00; uint8_t F_POR = 0x00;
uint8_t F_BOR = 0x00; uint8_t F_BOR = 0x00;
uint8_t F_WDR = 0x01; uint8_t F_WDR = 0x01;
@ -707,7 +731,7 @@ void validateStatus() {
} }
if (boot_vector == START_FROM_BOOTLOADER || boot_vector == START_FROM_POWERON) { if (boot_vector == START_FROM_BOOTLOADER || boot_vector == START_FROM_POWERON) {
if (eeprom_lock_set()) { if (eeprom_info_locked()) {
if (eeprom_product_valid() && eeprom_model_valid() && eeprom_hwrev_valid()) { if (eeprom_product_valid() && eeprom_model_valid() && eeprom_hwrev_valid()) {
if (eeprom_checksum_valid()) { if (eeprom_checksum_valid()) {
hw_ready = true; hw_ready = true;
@ -775,7 +799,7 @@ void loop() {
} }
} }
#if MCU_VARIANT == MCU_ESP32 #if SERIAL_EVENTS == SERIAL_POLLING
buffer_serial(); buffer_serial();
if (!fifo_isempty(&serialFIFO)) serial_poll(); if (!fifo_isempty(&serialFIFO)) serial_poll();
#else #else
@ -787,7 +811,7 @@ volatile bool serial_polling = false;
void serial_poll() { void serial_poll() {
serial_polling = true; serial_polling = true;
#if MCU_VARIANT != MCU_ESP32 #if SERIAL_EVENTS == SERIAL_INTERRUPT
while (!fifo_isempty_locked(&serialFIFO)) { while (!fifo_isempty_locked(&serialFIFO)) {
#else #else
while (!fifo_isempty(&serialFIFO)) { while (!fifo_isempty(&serialFIFO)) {
@ -812,7 +836,7 @@ void buffer_serial() {
while (c < MAX_CYCLES && Serial.available()) { while (c < MAX_CYCLES && Serial.available()) {
c++; c++;
#if MCU_VARIANT != MCU_ESP32 #if SERIAL_EVENTS == SERIAL_INTERRUPT
if (!fifo_isfull_locked(&serialFIFO)) { if (!fifo_isfull_locked(&serialFIFO)) {
fifo_push_locked(&serialFIFO, Serial.read()); fifo_push_locked(&serialFIFO, Serial.read());
} }
@ -853,8 +877,8 @@ void serial_interrupt_init() {
TIMSK3 = _BV(ICIE3); TIMSK3 = _BV(ICIE3);
#elif MCU_VARIANT == MCU_ESP32 #else
// No interrupt-based polling on ESP32 // No interrupt-based polling on other MCUs.
#endif #endif
} }

View File

@ -1,4 +1,6 @@
#include <EEPROM.h> #if LIBRARY_TYPE == LIBRARY_ARDUINO
#include <EEPROM.h>
#endif
#include <stddef.h> #include <stddef.h>
#include "Config.h" #include "Config.h"
#include "LoRa.h" #include "LoRa.h"
@ -6,6 +8,81 @@
#include "Framing.h" #include "Framing.h"
#include "MD5.h" #include "MD5.h"
#if LIBRARY_TYPE == LIBRARY_C
#include <time.h>
// We need a delay()
void delay(int ms) {
struct timespec interval;
interval.tv_sec = ms / 1000;
interval.tv_nsec = (ms % 1000) * 1000 * 1000;
// TODO: handle signals interrupting sleep
nanosleep(&interval, NULL);
}
// And millis()
struct timespec millis_base;
uint32_t millis() {
// Time since first call is close enough.
static bool base_set(false);
if (!base_set) {
if (clock_gettime(CLOCK_MONOTONIC, &millis_base)) {
exit(1);
}
base_set = true;
}
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now)) {
exit(1);
}
return (now.tv_sec - millis_base.tv_sec) * 1000 + (now.tv_nsec - millis_base.tv_nsec)/(1000*1000);
}
// We also need a Serial
class SerialClass {
public:
const char* fifoPath = "rnode_socket";
void begin(int baud) {
int status = mkfifo(fifoPath, 0666);
if (status) {
perror("Making fifo failed");
exit(1);
}
// TODO: Need a bidirectional thing here: openpty???
_fd = open(fifoPath, O_RDWR);
if (_fd < 0) {
perror("could not open fifo");
exit(1);
}
}
// Be truthy if connected
operator bool() {
return _fd > 0;
}
void write(int b) {
ssize_t written = ::write(_fd,
}
void write(const char* data) {
throw std::runtime_error("Unimplemented");
}
bool available() {
throw std::runtime_error("Unimplemented");
}
uint8_t read() {
throw std::runtime_error("Unimplemented");
}
protected:
int _fd = -1;
};
SerialClass Serial;
// And random(below);
int random(int below) {
return rand() % below;
}
#endif
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h" #include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR #define ISR_VECT IRAM_ATTR
@ -68,7 +145,15 @@ uint8_t boot_vector = 0x00;
void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif #endif
#elif MCU_VARIANT == MCU_LINUX
#if BOARD_MODEL == BOARD_SPIDEV
// No LEDs on this board. SPI only.
void led_rx_on() { }
void led_rx_off() { }
void led_tx_on() { }
void led_tx_off() { }
#endif
#endif #endif
void hard_reset(void) { void hard_reset(void) {
@ -79,23 +164,27 @@ void hard_reset(void) {
} }
#elif MCU_VARIANT == MCU_ESP32 #elif MCU_VARIANT == MCU_ESP32
ESP.restart(); ESP.restart();
#elif MCU_VARIANT == MCU_LINUX
// TODO: re-exec ourselves?
// For now just quit.
exit(0);
#endif #endif
} }
void led_indicate_error(int cycles) { void led_indicate_error(int cycles) {
bool forever = (cycles == 0) ? true : false; bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles; cycles = forever ? 1 : cycles;
while(cycles > 0) { while(cycles > 0) {
digitalWrite(pin_led_rx, HIGH); led_rx_on();
digitalWrite(pin_led_tx, LOW);
delay(100);
digitalWrite(pin_led_rx, LOW);
digitalWrite(pin_led_tx, HIGH);
delay(100);
if (!forever) cycles--;
}
led_rx_off();
led_tx_off(); led_tx_off();
delay(100);
led_rx_off();
led_tx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
led_tx_off();
} }
void led_indicate_boot_error() { void led_indicate_boot_error() {
@ -112,7 +201,7 @@ void led_indicate_boot_error() {
void led_indicate_warning(int cycles) { void led_indicate_warning(int cycles) {
bool forever = (cycles == 0) ? true : false; bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles; cycles = forever ? 1 : cycles;
digitalWrite(pin_led_tx, HIGH); led_tx_on();
while(cycles > 0) { while(cycles > 0) {
led_tx_off(); led_tx_off();
delay(100); delay(100);
@ -123,7 +212,7 @@ void led_indicate_warning(int cycles) {
led_tx_off(); led_tx_off();
} }
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_LINUX
void led_indicate_info(int cycles) { void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false; bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles; cycles = forever ? 1 : cycles;
@ -179,8 +268,9 @@ void led_indicate_warning(int cycles) {
#endif #endif
#endif #endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32
unsigned long led_standby_ticks = 0; unsigned long led_standby_ticks = 0;
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
uint8_t led_standby_min = 1; uint8_t led_standby_min = 1;
uint8_t led_standby_max = 40; uint8_t led_standby_max = 40;
@ -196,8 +286,10 @@ unsigned long led_standby_ticks = 0;
unsigned long led_standby_wait = 1768; unsigned long led_standby_wait = 1768;
unsigned long led_notready_wait = 150; unsigned long led_notready_wait = 150;
#endif #endif
uint8_t led_standby_value = led_standby_min; #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32
int8_t led_standby_direction = 0; uint8_t led_standby_value = led_standby_min;
int8_t led_standby_direction = 0;
#endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
void led_indicate_standby() { void led_indicate_standby() {
@ -243,6 +335,9 @@ int8_t led_standby_direction = 0;
#endif #endif
} }
} }
#elif MCU_VARIANT == MCU_LINUX
// No LEDs available.
void led_indicate_standby() {}
#endif #endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
@ -289,6 +384,9 @@ int8_t led_standby_direction = 0;
#endif #endif
} }
} }
#elif MCU_VARIANT == MCU_LINUX
// No LEDs available.
void led_indicate_not_ready() {}
#endif #endif
void escapedSerialWrite(uint8_t byte) { void escapedSerialWrite(uint8_t byte) {
@ -551,8 +649,16 @@ void promisc_disable() {
promisc = false; promisc = false;
} }
uint8_t eeprom_read(uint8_t addr) {
#if MCU_VARIANT == MCU_LINUX
return 0;
#else
return EEPROM.read(eeprom_addr(addr));
#endif
}
bool eeprom_info_locked() { bool eeprom_info_locked() {
uint8_t lock_byte = EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)); uint8_t lock_byte = eeprom_read(ADDR_INFO_LOCK);
if (lock_byte == INFO_LOCK_BYTE) { if (lock_byte == INFO_LOCK_BYTE) {
return true; return true;
} else { } else {
@ -560,34 +666,6 @@ bool eeprom_info_locked() {
} }
} }
void eeprom_dump_info() {
for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
uint8_t byte = EEPROM.read(eeprom_addr(addr));
escapedSerialWrite(byte);
}
}
void eeprom_dump_config() {
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
uint8_t byte = EEPROM.read(eeprom_addr(addr));
escapedSerialWrite(byte);
}
}
void eeprom_dump_all() {
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
uint8_t byte = EEPROM.read(eeprom_addr(addr));
escapedSerialWrite(byte);
}
}
void kiss_dump_eeprom() {
Serial.write(FEND);
Serial.write(CMD_ROM_READ);
eeprom_dump_all();
Serial.write(FEND);
}
void eeprom_update(int mapped_addr, uint8_t byte) { void eeprom_update(int mapped_addr, uint8_t byte) {
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
EEPROM.update(mapped_addr, byte); EEPROM.update(mapped_addr, byte);
@ -597,7 +675,6 @@ void eeprom_update(int mapped_addr, uint8_t byte) {
EEPROM.commit(); EEPROM.commit();
} }
#endif #endif
} }
void eeprom_write(uint8_t addr, uint8_t byte) { void eeprom_write(uint8_t addr, uint8_t byte) {
@ -615,16 +692,36 @@ void eeprom_erase() {
hard_reset(); hard_reset();
} }
bool eeprom_lock_set() { void eeprom_dump_info() {
if (EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) { for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
return true; uint8_t byte = eeprom_read(addr);
} else { escapedSerialWrite(byte);
return false;
} }
} }
void eeprom_dump_config() {
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
uint8_t byte = eeprom_read(addr);
escapedSerialWrite(byte);
}
}
void eeprom_dump_all() {
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
uint8_t byte = eeprom_read(addr);
escapedSerialWrite(byte);
}
}
void kiss_dump_eeprom() {
Serial.write(FEND);
Serial.write(CMD_ROM_READ);
eeprom_dump_all();
Serial.write(FEND);
}
bool eeprom_product_valid() { bool eeprom_product_valid() {
uint8_t rval = EEPROM.read(eeprom_addr(ADDR_PRODUCT)); uint8_t rval = eeprom_read(ADDR_PRODUCT);
#if PLATFORM == PLATFORM_AVR #if PLATFORM == PLATFORM_AVR
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) { if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) {
@ -640,7 +737,7 @@ bool eeprom_product_valid() {
} }
bool eeprom_model_valid() { bool eeprom_model_valid() {
model = EEPROM.read(eeprom_addr(ADDR_MODEL)); model = eeprom_read(ADDR_MODEL);
#if BOARD_MODEL == BOARD_RNODE #if BOARD_MODEL == BOARD_RNODE
if (model == MODEL_A4 || model == MODEL_A9) { if (model == MODEL_A4 || model == MODEL_A9) {
#elif BOARD_MODEL == BOARD_HMBRW #elif BOARD_MODEL == BOARD_HMBRW
@ -665,7 +762,7 @@ bool eeprom_model_valid() {
} }
bool eeprom_hwrev_valid() { bool eeprom_hwrev_valid() {
hwrev = EEPROM.read(eeprom_addr(ADDR_HW_REV)); hwrev = eeprom_read(ADDR_HW_REV);
if (hwrev != 0x00 && hwrev != 0xFF) { if (hwrev != 0x00 && hwrev != 0xFF) {
return true; return true;
} else { } else {
@ -676,14 +773,14 @@ bool eeprom_hwrev_valid() {
bool eeprom_checksum_valid() { bool eeprom_checksum_valid() {
char *data = (char*)malloc(CHECKSUMMED_SIZE); char *data = (char*)malloc(CHECKSUMMED_SIZE);
for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) { for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) {
char byte = EEPROM.read(eeprom_addr(i)); char byte = eeprom_read(i);
data[i] = byte; data[i] = byte;
} }
unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE); unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE);
bool checksum_valid = true; bool checksum_valid = true;
for (uint8_t i = 0; i < 16; i++) { for (uint8_t i = 0; i < 16; i++) {
uint8_t stored_chk_byte = EEPROM.read(eeprom_addr(ADDR_CHKSUM+i)); uint8_t stored_chk_byte = eeprom_read(ADDR_CHKSUM+i);
uint8_t calced_chk_byte = (uint8_t)hash[i]; uint8_t calced_chk_byte = (uint8_t)hash[i];
if (stored_chk_byte != calced_chk_byte) { if (stored_chk_byte != calced_chk_byte) {
checksum_valid = false; checksum_valid = false;
@ -696,7 +793,7 @@ bool eeprom_checksum_valid() {
} }
bool eeprom_have_conf() { bool eeprom_have_conf() {
if (EEPROM.read(eeprom_addr(ADDR_CONF_OK)) == CONF_OK_BYTE) { if (eeprom_read(ADDR_CONF_OK) == CONF_OK_BYTE) {
return true; return true;
} else { } else {
return false; return false;
@ -705,11 +802,11 @@ bool eeprom_have_conf() {
void eeprom_conf_load() { void eeprom_conf_load() {
if (eeprom_have_conf()) { if (eeprom_have_conf()) {
lora_sf = EEPROM.read(eeprom_addr(ADDR_CONF_SF)); lora_sf = eeprom_read(ADDR_CONF_SF);
lora_cr = EEPROM.read(eeprom_addr(ADDR_CONF_CR)); lora_cr = eeprom_read(ADDR_CONF_CR);
lora_txp = EEPROM.read(eeprom_addr(ADDR_CONF_TXP)); lora_txp = eeprom_read(ADDR_CONF_TXP);
lora_freq = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x03); lora_freq = (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x03);
lora_bw = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x03); lora_bw = (uint32_t)eeprom_read(ADDR_CONF_BW+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x03);
} }
} }
@ -784,7 +881,7 @@ inline void fifo_flush(FIFOBuffer *f) {
f->head = f->tail; f->head = f->tail;
} }
#if MCU_VARIANT != MCU_ESP32 #if SERIAL_EVENTS == SERIAL_INTERRUPT
static inline bool fifo_isempty_locked(const FIFOBuffer *f) { static inline bool fifo_isempty_locked(const FIFOBuffer *f) {
bool result; bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
@ -866,7 +963,7 @@ inline void fifo16_flush(FIFOBuffer16 *f) {
f->head = f->tail; f->head = f->tail;
} }
#if MCU_VARIANT != MCU_ESP32 #if SERIAL_EVENTS == SERIAL_INTERRUPT
static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) { static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) {
bool result; bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {