mirror of
https://github.com/noplacenoaddress/RNMnetwork.git
synced 2025-01-20 19:41:48 -05:00
118 lines
13 KiB
Markdown
118 lines
13 KiB
Markdown
# Componentes activos: semiconductores y válvulas
|
|
|
|
#### 3.1 Esquemas y símbolos en electrónica.
|
|
|
|
![](https://github.com/redeltaglio/RNMnetwork/raw/master/Images/simbolos.jpg)
|
|
|
|
Un esquema de un circuito electrónico está compuesto por un grupo de símbolos unidos por líneas que nos está indicando los componentes que lo integran y su funcionamiento.
|
|
|
|
Algunos símbolos van acompañados de una nomenclatura que nos indica las características del elemento representado como por ejemplo junto a un condensador pueden aparecer unos caracteres que indican su valor.
|
|
|
|
#### 3.2 Semiconductores
|
|
|
|
![](https://i2.wp.com/codigoespagueti.com/wp-content/uploads/2021/03/silicio-en-los-chips-1.jpg?resize=1280%2C720&quality=80&ssl=1)
|
|
|
|
Los [semiconductores](https://es.wikipedia.org/wiki/Semiconductor) son substancias que tienen una conductividad intermedia entre los altos valores de los metales y los bajos de los aislantes.
|
|
|
|
Los cristales de [germanio](https://es.wikipedia.org/wiki/Germanio) o [silicio](https://es.wikipedia.org/wiki/Silicio) puros pueden considerarse como buenas aisladores porque carecen de electrones libres pero añadiéndoles impurezas pueden variar sus propiedades iniciales. Su mecanismo de conducción es distinto de los conductores metálicos; la impurezas la forman elementos con distintos número de electrones que ellos: si tienen más electrones que los semiconductores se les llama donantes y si tienen menos aceptantes (tienen «huecos» que se comportan como si tuvieran una carga eléctrica positiva y de igual magnitud que la de un electrón). Los electrones y los «huecos» se mueven en un campo eléctrico con una velocidad que es proporcional a la intensidad de dicho campo, los «huecos» se mueven en dirección opuesta a los electrones y con una velocidad que es la mitad de estos.
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/8/8b/N-Type_Semiconductor_Bands.svg)
|
|
|
|
Si por ejemplo combinamos germanio con un donante queda polarizado negativamente: así tenemos un semiconductor tipo `N` (negativo). Si la impureza es un aceptante el germanio queda polarizado positivamente convirtiéndose en un semiconductor tipo `P`.
|
|
|
|
#### 3.3 Diodos.
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/d/d5/Diode-closeup.jpg)
|
|
|
|
Un [diodo](https://es.wikipedia.org/wiki/Diodo) es un dispositivo que bajo determinadas circunstancias permite le paso de la corriente eléctrica en una única dirección.
|
|
|
|
Son uniones de dos materiales semiconductores `P` y `N` por lo que reciben la denominación de <u>unión pn</u>.
|
|
|
|
Ninguno de los dos cristales por separado tiene carga eléctrica, ya que en cada cristal, el número de electrones y cargas positivas es el mismo, de lo que podemos decir que los dos cristales son neutros. Al unir ambos hay una difusión de electrones de `N` a `P` y aparece una barrera de separación neutra. Al establecerse estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe diferentes denominaciones como zona de carga espacial, de agotamiento, de deplexión.
|
|
|
|
A medida que progresa el proceso de difusión, la zona de carga espacial va incrementando su anchura profundizando en los cristales a ambos lados de la unión. La acumulación de iones positivos en la zona `N` y de iones negativos en `P` crea un campo eléctrico que actuará sobre los electrones libres de `N` con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.
|
|
|
|
Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas `P` y `N`. Esta diferencia de potencia es de `0,7 V` en el caso del silicio y de `0,3 V` si los cristales son de germanio.
|
|
|
|
La anchura de la zona de carga espacial una vez alcanzado el equilibrio, suele ser del orden de `0,5 micras` pero cuando uno de los cristales está mucho más dopado que el otro la zona de carga espacial es mucho mayor.
|
|
|
|
Al dispositivo así obtenido se la denomina diodo, que ne un caso como el descrito, tal que no se encuentra sometido a un diferencia de potencial externa, se dice que no está polarizado. Al extremo `P`, se le denomina [ánodo](https://es.wikipedia.org/wiki/%C3%81nodo), representándose por la letra `A`, mientras que la zona `N`, el [cátodo](https://es.wikipedia.org/wiki/C%C3%A1todo), se representa por la letra `C` o `K`.
|
|
|
|
Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización «directa» o «inversa».
|
|
|
|
![](https://raw.githubusercontent.com/redeltaglio/RNMnetwork/master/es.telecomlobby.com/radio_aficion/PCB/diodo_poldirecta.svg)
|
|
|
|
Se llama polarización directa cuando el cristal `P` va unido mediante un conductor al polo positivo de una batería o pila exterior y el cristal `N` al polo negativo. Por el exterior del sistema en la polarización directa hay flujo de electrones y van de `P` a `N`. Si se aumenta la polarización directa la corriente aumenta; si llega a ser excesiva se rompe la estructura cristalina. La tensión aplicada normalmente a esta clase de polarización es `1` a `1.5V`.
|
|
|
|
En el caso de la polarización directa, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.
|
|
|
|
![](https://github.com/redeltaglio/RNMnetwork/raw/master/es.telecomlobby.com/radio_aficion/PCB/diodo_polinversa.svg)
|
|
|
|
Se llama polarización inversa a aquélla en que le cristal `P` va unida al polo negativo de la pila o batería y el cristal `N` al positivo. En la polarización inversa los «huecos» del `P` son atraídos hacia el polo negativo de la batería y los electrones del `N` hacia el positivo de la batería; no hay corriente por el circuito. Una polarización inversa excesiva rompe la estructura del cristal.
|
|
|
|
La <u>unión PN</u> funciona, en cierto modo, como un conmutador; el germanio tipo `N` es el «emisor» y el tipo `P` el «colector». La polarización directa favorece el paso de la corriente y disminuye la barrera de potencial que hay entre los cristales. La polarización inversa dificulta la corriente y aumenta la barrera.
|
|
|
|
SEn el caso de polarización inversa, el polo negativo de la batería se conecta a la zona `P` y el polo positivo a la zona `N`, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería. El diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco a ambos la dos de la unión produciendo una pequeña corriente del orden de `1 µA` denominada corriente inversa de saturación.
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/5/51/Diodo_-_curva_caracter%C3%ADstica_%28Sockley%29.png)
|
|
|
|
En los semiconductores el desplazamiento de los electrones es en dirección hacía el polo positivo y nos referimos al movimiento en el interior del cristal, ya que la polarización directa vimos que hay un flujo externo de `P` a `N`. Los «huecos» en cambio se desplazan hacia el polo negativo en el cristal o se combinan con electrones según polarización.
|
|
|
|
Esquemáticamente diremos que el tipo `N` los conductores son los electrones y en el tipo `P` los conductores son los «huecos».
|
|
|
|
De forma simplificada, la curva característica de un diodo (`I V`) consta de dos regiones, por debajo de cierta diferencia de potencial, el diodo se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con muy pequeña resistencia eléctrica.
|
|
|
|
Debido a las características expuestas de los diodos, tienen diversas aplicaciones, tales como: [rectificadores](https://es.wikipedia.org/wiki/Rectificador), [estabilizadores](https://es.wikipedia.org/wiki/Regulador_de_tensi%C3%B3n), [recortadores](https://es.wikipedia.org/wiki/Limitador), [multiplicadores](https://es.wikipedia.org/wiki/Multiplicador_de_tensi%C3%B3n), [mezcladores](https://es.wikipedia.org/wiki/Mezclador_de_frecuencias). Veamos seguidamente cuatro delas aplicaciones más usuales.
|
|
|
|
#### 3.3.1 Diodos rectificadores, diodos zener, diodos LED y diodos varicap.
|
|
|
|
![](https://raw.githubusercontent.com/redeltaglio/RNMnetwork/master/es.telecomlobby.com/radio_aficion/PCB/retificador_mediaonda.svg)
|
|
|
|
Una de las aplicaciones de los diodos es la de ser rectificadores de corriente alterna, es decir dispositivos capaces de convertir una corriente alterna en continua. El [rectificador de media onda](https://es.wikipedia.org/wiki/Rectificador_de_monof%C3%A1sico_de_media_onda) es un circuito empleado para eliminar la parte negativa de una señal de corriente alterna de entrada `Vi` convirtiéndola en corriente continua de salida `Vo`. Es el circuito de rectificación más sencillo que puede construirse con un diodo. En este circuito la señal de salida también se llama pulsante:
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/c/c6/Tensi%C3%B3n_rectificada_media_onda.png)
|
|
|
|
|
|
|
|
Un [diodo zener](https://es.wikipedia.org/wiki/Diodo_Zener), es un diodo de silicio que se ha construido para que funcione la zonas de rupturas. Llamados a vece diodos de avalancha o de ruptura son la parte esencial de los reguladores de tensión casi constantes con independencia de que se presenten grandes variaciones de la tensión de red, de la resistencia de carga y de la temperatura.
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/8/81/Diode05.svg)
|
|
|
|
Cuando están polarizados inversamente, mantienen la tensión entre sus terminales prácticamente constante en un amplio rango de intensidades y temperaturas; este tipo de diodos se emplean en circuitos estabilizadores o reguladores de tensíon.
|
|
|
|
![](https://github.com/noplacenoaddress/RNMnetwork/raw/master/es.telecomlobby.com/radio_aficion/PCB/diodo_zener.svg)
|
|
|
|
Eligiendo `R` y las características del diodo, se puede lograr que la tensión en la carga `Rl` permanezca prácticamente constante dentro del rango de variación de la tensión de entrada `Vs`.
|
|
|
|
Es importante tener en cuenta que `Vs` tienen que ser mayor que `Vz` dado que el diodo zener trabaja en la [zona de avalancha](http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina10.htm#Efecto%20Avalancha).
|
|
|
|
Para elegir la resistencia limitadora `R` adecuada hay que calcular primero cual puede ser su valor máximo y mínimo, después elegiremos una `R` normalizada que se adecue a nuestros cálculos.
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/7/79/LEDES.jpg)
|
|
|
|
Un diodo [LED](https://es.wikipedia.org/wiki/Led) es un dispositivo semiconductor que emite luz monocromática cuando se polariza directamente y es atravesado por una corriente eléctrica, su color depende del material semiconductor empleado en la construcción del diodo, pudiendo variar desde el [ultravioleta](https://es.wikipedia.org/wiki/Radiaci%C3%B3n_ultravioleta) hasta el [infrarrojo](https://es.wikipedia.org/wiki/Radiaci%C3%B3n_infrarroja); recibiendo estos últimos la denominación de [diodos IRED](https://es.wikipedia.org/wiki/Sensor_infrarrojo). Los LED suelen estar encapsulados en una cubierta de plástico coloreado.
|
|
|
|
Para obtener una buena intensidad luminosa debe escogerse bien la corriente que atraviesa el LED; su voltaje de operación va desde `1,5` hasta `3,5 V`, y la gama de intensidades que debe circular por ellos va desde `10` hasta `20 mA` en los diodos de color rojo y de `20` a `40mA` para el resto.
|
|
|
|
El [diodo varicap](https://es.wikipedia.org/wiki/Diodo_Varicap) o de capacidad variable es un tipo de diodo qe base su funcionamiento en el fenómeno, ya explicado, que hace que la anchura de la barrera de potencial en una unión `PN` varíe en función de la tensión inversa aplicada entre sus extremos. Al aumentar dicha tensión aumenta la anchura de esa barrera, disminuyendo así la capacidad del diodo.
|
|
|
|
De esta forma tenemos un condensador variable controlado por tensión. Los valores de capacidad obtenidos va desde `1` a `500 pF`. La tensión inversa mínima tiene que ser de `1V`.
|
|
|
|
#### 3.3.2 Tensión inversa y pérdidas de corriente.
|
|
|
|
Tal y como se ha dicho al hablar de la polarización inversa, la pequeña corriente que circula por la superficie del diodo es función de la tensión aplicada al diodo, con l oque al aumentar la tensión aumenta la corriente superficial de fugas.
|
|
|
|
#### 3.4 Tiristores.
|
|
|
|
![](https://upload.wikimedia.org/wikipedia/commons/1/1f/Thyristor_circuit_symbol_es.jpg)
|
|
|
|
Un [tiristor](https://es.wikipedia.org/wiki/Tiristor) es un dispositivo semiconductor biestable de cuatro capas `P-N-P-N` con tres terminales ánodo, cátodo y [compuerta](https://es.wikipedia.org/wiki/Puerta_l%C3%B3gica). El dispositivo puede conmutar de bloqueo a conducción o reduciendo la corriente que lo atraviesa por debajo del valor umbral o al revés. Existen múltiples tipos de tristores y se usan como interruptores electrónicos de potencia.
|
|
|
|
|
|
|
|
|
|
|
|
## Bibliografía
|
|
|
|
- Libro de examen de radioaficionado, Luis Alarcón Palencia `EA4DXP`
|
|
- [Euskal Herriko Unibertsitatea](http://www.ehu.es/), Industri Ingeniaritza Teknikorako Unibertsitate Eskola, [Curso de Electrónica Básica en Internet](http://www.sc.ehu.es/sbweb/electronica/elec_basica/) |