OpenModem/Modem/afsk.h

120 lines
5.1 KiB
C
Raw Normal View History

2014-04-06 14:26:24 -04:00
//////////////////////////////////////////////////////
// First things first, all the includes we need //
//////////////////////////////////////////////////////
2014-04-03 16:21:37 -04:00
2014-04-03 16:41:49 -04:00
#ifndef FSK_MODEM_H
#define FSK_MODEM_H
2014-04-03 16:21:37 -04:00
2014-05-20 02:52:10 -04:00
#include "config.h" // Various configuration values
#include "hardware.h" // Hardware functions
2014-04-03 16:21:37 -04:00
2014-05-20 02:52:10 -04:00
#include <cfg/compiler.h> // Compiler info from BertOS
#include <struct/fifobuf.h> // FIFO buffer implementation from BertOS
#include <io/kfile.h> // The BertOS KFile interface. This is
// used for letting other functions read
// from or write to the modem like a
// file descriptor.
2014-04-03 16:21:37 -04:00
2014-04-06 14:26:24 -04:00
//////////////////////////////////////////////////////
// Our type definitions and function declarations //
//////////////////////////////////////////////////////
2014-04-03 16:21:37 -04:00
2014-05-20 02:52:10 -04:00
#define SAMPLERATE 9600 // The rate at which we are sampling and synthesizing
#define BITRATE 1200 // The actual bitrate at baseband. This is the baudrate.
2014-04-06 14:26:24 -04:00
#define SAMPLESPERBIT (SAMPLERATE / BITRATE) // How many DAC/ADC samples constitute one bit (8).
2014-04-03 16:21:37 -04:00
2014-04-06 14:26:24 -04:00
// This defines an errortype for a receive-
// buffer overrun.
#define RX_OVERRUN BV(0)
// This struct defines a Hdlc parser. It will let
// us parse the raw bits coming in from the modem
// and synchronise to byte boundaries.
2014-04-03 16:21:37 -04:00
typedef struct Hdlc
{
2014-05-20 02:52:10 -04:00
uint8_t demodulatedBits; // Incoming bitstream from demodulator
uint8_t bitIndex; // The current received bit in the current received byte
uint8_t currentByte; // The byte we're currently receiving
bool receiving; // Whether or not where actually receiving data (or just noise ;P)
2014-04-03 16:21:37 -04:00
} Hdlc;
2014-04-06 14:26:24 -04:00
// This is our primary modem struct. It defines
// all the values we need to modulate and
// demodulate data from the physical medium.
2014-04-03 16:21:37 -04:00
typedef struct Afsk
{
2014-05-20 02:52:10 -04:00
KFile fd; // A file descriptor for reading from and
// writing to the modem
2014-04-03 17:22:15 -04:00
2014-05-20 02:52:10 -04:00
// I/O hardware pins
int adcPin; // Pin for incoming signal
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
// General values
Hdlc hdlc; // We need a link control structure
uint16_t preambleLength; // Length of sync preamble
uint16_t tailLength; // Length of transmission tail
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
// Modulation values
uint8_t sampleIndex; // Current sample index for outgoing bit
uint8_t currentOutputByte; // Current byte to be modulated
uint8_t txBit; // Mask of current modulated bit
bool bitStuff; // Whether bitstuffing is allowed
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
uint8_t bitstuffCount; // Counter for bit-stuffing
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
uint16_t phaseAcc; // Phase accumulator
uint16_t phaseInc; // Phase increment per sample
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
FIFOBuffer txFifo; // FIFO for transmit data
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
volatile bool sending; // Set when modem is sending
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
// Demodulation values
FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination
int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
FIFOBuffer rxFifo; // FIFO for received data
uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
int16_t iirX[2]; // IIR Filter X cells
int16_t iirY[2]; // IIR Filter Y cells
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
int8_t currentPhase; // Current phase of the demodulator
uint8_t actualBits; // Actual found bits at correct bitrate
2014-04-03 17:07:21 -04:00
2014-05-20 02:52:10 -04:00
volatile int status; // Status of the modem, 0 means OK
2014-04-03 17:07:21 -04:00
2014-04-03 16:21:37 -04:00
} Afsk;
2014-04-04 02:45:27 -04:00
// Explanation nessecary for this. BertOS uses an
// object-oriented approach for handling "file-like"
// transactions (yes, we are using C :P). What we are
// doing here is defining a specific "file type" for
// the standard KFile to identify the modem as a "file"
// that can be read from and written to.
2014-04-03 16:54:34 -04:00
#define KFT_AFSK MAKE_ID('F', 'S', 'K', 'M')
2014-04-03 16:21:37 -04:00
2014-04-04 02:45:27 -04:00
// We then make a macro that can "typecast" a generic
// KFile file-pointer to an Afsk "object". This lets
// other pieces of code read from and write to the AFSK
// "objects" buffers with the standard KFile operations.
// If this seems weird and confusing, check out the
// BertOS KFile explanation at:
// http://www.bertos.org/use/tutorial-front-page/drivers-kfile-interface
INLINE Afsk *AFSK_CAST(KFile *fd) {
// We need to assert that the what we are trying
// to read/write is actually an AFSK "object",
// identified by the KFT_AFSK constant
2014-04-03 16:21:37 -04:00
ASSERT(fd->_type == KFT_AFSK);
return (Afsk *)fd;
}
2014-04-06 14:26:24 -04:00
// Declare Interrupt Service Routines
// and initialization functions
2014-04-03 16:21:37 -04:00
void afsk_adc_isr(Afsk *af, int8_t sample);
uint8_t afsk_dac_isr(Afsk *af);
2014-04-06 14:29:39 -04:00
void afsk_init(Afsk *af, int adc_ch);
2014-04-03 16:21:37 -04:00
2014-04-06 14:26:24 -04:00
#endif