OpenModem/Modem/protocol/mp1.c

358 lines
11 KiB
C
Raw Normal View History

2014-04-04 05:17:47 -04:00
#include "mp1.h"
2014-04-07 16:06:33 -04:00
#include "hardware.h"
2014-04-04 05:17:47 -04:00
#include <string.h>
2014-04-04 11:05:53 -04:00
#include <drv/ser.h>
2014-04-04 05:17:47 -04:00
2014-04-14 15:03:22 -04:00
#include "compression/heatshrink_encoder.h"
#include "compression/heatshrink_decoder.h"
// FIXME: Describe these
2014-04-13 11:25:13 -04:00
static uint8_t lastByte = 0x00;
static bool sendParityBlock = false;
2014-04-14 15:03:22 -04:00
// FIXME: Describe this
INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); }
2014-04-13 11:25:13 -04:00
static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
uint8_t parity = 0x00;
parity = ((BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7))) +
((BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7))<<1) +
((BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8))<<2) +
((BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8))<<3) +
((BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7))<<4) +
((BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7))<<5) +
((BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8))<<6) +
((BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8))<<7);
2014-04-13 11:25:13 -04:00
return parity;
}
2014-04-04 05:17:47 -04:00
static void mp1Decode(MP1 *mp1) {
2014-04-06 11:17:13 -04:00
// This decode function is basic and bare minimum.
// It does nothing more than extract the data
// payload from the buffer and put it into a struct
// for further processing.
2014-04-04 05:17:47 -04:00
MP1Packet packet; // A decoded packet struct
uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context
// Get the header and "remove" it from the buffer
uint8_t header = buffer[0];
buffer++;
// If header indicates a padded packet, remove
// padding
2014-04-14 15:03:22 -04:00
if (header & MP1_HEADER_PADDED) {
buffer++;
}
2014-04-04 05:17:47 -04:00
2014-04-06 11:17:13 -04:00
// Set the payload length of the packet to the counted
// length minus 1, so we remove the checksum
packet.dataLength = mp1->packetLength - 2 - (header & 0x01);
2014-04-14 15:03:22 -04:00
// Check if we have received a compressed packet
if (header & MP1_HEADER_COMPRESSION) {
size_t decompressedSize = decompress(buffer, packet.dataLength);
packet.dataLength = decompressedSize;
memcpy(buffer, compressionBuffer, decompressedSize);
}
2014-04-04 05:17:47 -04:00
packet.data = buffer;
2014-04-06 11:17:13 -04:00
// If a callback have been specified, let's
// call it and pass the decoded packet
2014-04-04 05:17:47 -04:00
if (mp1->callback) mp1->callback(&packet);
}
2014-04-06 11:17:13 -04:00
////////////////////////////////////////////////////////////
// The Poll function reads data from the modem, handles //
// frame recognition and passes data on to higher layers //
// if valid packets are found //
////////////////////////////////////////////////////////////
2014-04-04 05:17:47 -04:00
void mp1Poll(MP1 *mp1) {
2014-04-06 17:39:28 -04:00
int byte; // A place to store our read byte
sendParityBlock = false; // Reset our parity tx indicator
2014-04-04 05:17:47 -04:00
// Read bytes from the modem until we reach EOF
while ((byte = kfile_getc(mp1->modem)) != EOF) {
2014-04-13 11:25:13 -04:00
// We have a byte, increment our read counter
2014-04-04 05:17:47 -04:00
// FIXME: Describe error correction
if (mp1->reading && (byte != AX25_ESC) ) {
mp1->readLength++;
2014-04-04 05:17:47 -04:00
2014-04-13 11:25:13 -04:00
if (mp1->readLength % 3 == 0) {
mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]);
uint8_t syndrome = mp1->calculatedParity ^ byte;
if (syndrome == 0x00) {
// No problems!
2014-04-13 11:25:13 -04:00
} else {
uint8_t syndromes[2];
syndromes[0] = syndrome & 0x0f;
syndromes[1] = (syndrome & 0xf0) >> 4;
for (int i = 0; i < 2; i++) {
uint8_t s = syndromes[i];
uint8_t correction = 0x00;
if (s == 1 || s == 2 || s == 4 || s == 8) {
// Error in parity bit, no correction needed
continue;
}
if (s == 3) correction = 0x01;
if (s == 5) correction = 0x02;
if (s == 6) correction = 0x04;
if (s == 7) correction = 0x08;
if (s == 9) correction = 0x10;
if (s == 10) correction = 0x20;
if (s == 11) correction = 0x40;
if (s == 12) correction = 0x80;
2014-04-04 05:17:47 -04:00
if (correction != 0x00) {
mp1->checksum_in ^= correction;
}
mp1->buffer[mp1->packetLength-(2-i)] ^= correction;
}
}
2014-04-13 11:25:13 -04:00
continue;
}
}
// FIXME: Describe error correction //////////
if (!mp1->escape && byte == HDLC_FLAG) {
// We are not in an escape sequence and we
// found a HDLC_FLAG. This can mean two things:
if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) {
// We already have more data than the minimum
// frame length, which means the flag signifies
// the end of the packet. Pass control to the
// decoder.
if ((mp1->checksum_in & 0xff) == 0x00) {
mp1Decode(mp1);
2014-04-13 11:25:13 -04:00
} else {
// Checksum was incorrect, we don't do anything,
// but you can enable the decode anyway, if you
// need it for testing or debugging
2014-04-13 19:25:40 -04:00
// kprintf("[ER] [%d] ", mp1->checksum_in);
//mp1Decode(mp1);
2014-04-13 11:25:13 -04:00
}
2014-04-04 05:17:47 -04:00
}
// If the above is not the case, this must be the
// beginning of a frame
mp1->reading = true;
mp1->packetLength = 0;
mp1->readLength = 0;
mp1->checksum_in = MP1_CHECKSUM_INIT;
// We have indicated that we are reading,
// and reset the length counter. Now we'll
// continue to the next byte.
continue;
}
if (!mp1->escape && byte == HDLC_RESET) {
// Not good, we got a reset. The transmitting
// party may have encountered an error. We'll
// stop receiving this packet immediately.
mp1->reading = false;
continue;
}
// This should be a parity byte
if (!mp1->escape && byte == AX25_ESC) {
// We found an escape character. We'll set
// the escape seqeunce indicator so we don't
// interpret the next byte as a reset or flag
mp1->escape = true;
continue;
}
// Now let's get to the actual reading of the data
if (mp1->reading) {
if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) {
// If the length of the current incoming frame is
// still less than our max length, put the incoming
// byte in the buffer.
mp1->checksum_in = mp1->checksum_in ^ byte;
mp1->buffer[mp1->packetLength++] = byte;
} else {
// If not, we have a problem: The buffer has overrun
// We need to stop receiving, and the packet will be
// dropped :(
mp1->reading = false;
}
2014-04-04 05:17:47 -04:00
}
// We need to set the escape sequence indicator back
// to false after each byte.
mp1->escape = false;
2014-04-04 05:17:47 -04:00
}
if (kfile_error(mp1->modem)) {
// If there was an error from the modem, we'll be rude
// and just reset it. No error handling is done for now.
kfile_clearerr(mp1->modem);
}
}
// FIXME: Desribe additions here
static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
// If we are sending something that looks
// like an HDLC special byte, send an escape
// character first
if (byte == HDLC_FLAG ||
byte == HDLC_RESET ||
byte == AX25_ESC) {
kfile_putc(AX25_ESC, mp1->modem);
2014-04-13 11:25:13 -04:00
lastByte = AX25_ESC;
//sendParityBlock ^= true;
}
2014-04-13 11:25:13 -04:00
kfile_putc(byte, mp1->modem);
2014-04-13 11:25:13 -04:00
if (sendParityBlock) {
uint8_t p = mp1ParityBlock(lastByte, byte);
kfile_putc(p, mp1->modem);
2014-04-13 11:25:13 -04:00
}
lastByte = byte;
sendParityBlock ^= true;
}
void mp1Send(MP1 *mp1, const void *_buffer, size_t length) {
// Get the transmit data buffer
const uint8_t *buffer = (const uint8_t *)_buffer;
2014-04-04 11:05:53 -04:00
// Initialize checksum
mp1->checksum_out = MP1_CHECKSUM_INIT;
// Transmit the HDLC_FLAG to signify start of TX
kfile_putc(HDLC_FLAG, mp1->modem);
2014-04-14 15:03:22 -04:00
bool packetCompression = false;
size_t compressedSize = compress(buffer, length);
if (compressedSize != 0 && compressedSize < length) {
//kprintf("Using compression\n");
// Compression saved us some space, we'll
// send the paket compressed
packetCompression = true;
memcpy(buffer, compressionBuffer, compressedSize);
length = compressedSize;
} else {
// We are not going to use compression
}
// Write header and possibly padding
// Remember we also write a header and
// a checksum. This ensures that we will
// always end our packet with a checksum
// and a parity byte.
2014-04-14 15:03:22 -04:00
uint8_t header = 0xf0;
if (packetCompression) header ^= MP1_HEADER_COMPRESSION;
if (length % 2 != 0) {
2014-04-14 15:03:22 -04:00
header ^= MP1_HEADER_PADDED;
mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header);
mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING;
mp1Putbyte(mp1, MP1_PADDING);
} else {
2014-04-14 15:03:22 -04:00
mp1->checksum_out = mp1->checksum_out ^ header;
mp1Putbyte(mp1, header);
}
// Continously increment the pointer address
// of the buffer while passing it to the byte
// output function
2014-04-04 11:05:53 -04:00
while (length--) {
mp1->checksum_out = mp1->checksum_out ^ *buffer;
mp1Putbyte(mp1, *buffer++);
2014-04-04 11:05:53 -04:00
}
// Write checksum to end of packet
mp1Putbyte(mp1, mp1->checksum_out);
// Transmit a HDLC_FLAG to signify end of TX
kfile_putc(HDLC_FLAG, mp1->modem);
}
2014-04-04 05:17:47 -04:00
void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) {
// Allocate memory for our protocol "object"
memset(mp1, 0, sizeof(*mp1));
2014-04-06 11:17:13 -04:00
// Set references to our modem "object" and
// a callback for when a packet has been decoded
2014-04-04 05:17:47 -04:00
mp1->modem = modem;
mp1->callback = callback;
2014-04-14 15:03:22 -04:00
}
int freeRam(void) {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}
size_t compress(uint8_t *input, size_t length) {
heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4);
if (hse == NULL) {
//kprintf("Could not allocate encoder\n");
return 0;
}
size_t written = 0;
size_t sunk = 0;
heatshrink_encoder_sink(hse, input, length, &sunk);
int status = heatshrink_encoder_finish(hse);
if (sunk < length) {
//kprintf("Not all data was sunk into encoder\n");
heatshrink_encoder_free(hse);
return 0;
} else {
//kprintf("Bytes sunk into HSE: %d\n", length);
if (status == HSER_FINISH_MORE) {
heatshrink_encoder_poll(hse, compressionBuffer, MP1_MAX_FRAME_LENGTH, &written);
//kprintf("Bytes written into buffer: %d\n", written);
} else {
//kprintf("All input data was sunk, but encoder doesn't have any data for us.");
}
}
heatshrink_encoder_free(hse);
return written;
}
size_t decompress(uint8_t *input, size_t length) {
heatshrink_decoder *hsd = heatshrink_decoder_alloc(MP1_MAX_FRAME_LENGTH, 8, 4);
if (hsd == NULL) {
//kprintf("Could not allocate decoder\n");
return 0;
}
//kprintf("\nDecoder allocated. Free RAM: %d bytes\n", freeRam());
size_t written = 0;
size_t sunk = 0;
heatshrink_decoder_sink(hsd, input, length, &sunk);
int status = heatshrink_decoder_finish(hsd);
if (sunk < length) {
//kprintf("Not all data was sunk into decoder\n");
heatshrink_decoder_free(hsd);
return 0;
} else {
//kprintf("Bytes sunk into HSD: %d\n", length);
if (status == HSER_FINISH_MORE) {
heatshrink_decoder_poll(hsd, compressionBuffer, MP1_MAX_FRAME_LENGTH, &written);
//kprintf("Bytes written into decompression buffer: %d\n", written);
} else {
//kprintf("All input data was sunk, but the decoder doesn't have any data for us.");
}
}
heatshrink_decoder_free(hsd);
return written;
}