mirror of
https://github.com/The-Art-of-Hacking/h4cker.git
synced 2025-01-16 01:27:08 -05:00
98 lines
2.7 KiB
Markdown
98 lines
2.7 KiB
Markdown
# Lab Guide: Image Recognition with TensorFlow and Keras
|
|
|
|
## **Objective**
|
|
|
|
To provide students with hands-on experience in developing, training, and evaluating image recognition models using TensorFlow and Keras.
|
|
|
|
## **Prerequisites**
|
|
|
|
1. Basic understanding of Python programming.
|
|
2. Familiarity with machine learning concepts.
|
|
3. Python and necessary libraries installed: TensorFlow and Keras.
|
|
|
|
## **Lab Outline**
|
|
|
|
**Introduction to Image Recognition**:
|
|
- Discussing the basics of image recognition and convolutional neural networks (CNN).
|
|
|
|
**Setting Up the Environment**:
|
|
- Installing TensorFlow and Keras:
|
|
|
|
```bash
|
|
pip install tensorflow keras
|
|
```
|
|
|
|
**Image Data Preprocessing**:
|
|
|
|
- **Step 1**: Importing Necessary Libraries:
|
|
```python
|
|
import tensorflow as tf
|
|
from tensorflow.keras import datasets, layers, models
|
|
```
|
|
|
|
- **Step 2**: Loading and Preprocessing Image Data:
|
|
```python
|
|
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
|
|
|
|
# Normalize pixel values to be between 0 and 1
|
|
train_images, test_images = train_images / 255.0, test_images / 255.0
|
|
```
|
|
|
|
**Building a Convolutional Neural Network (CNN)**:
|
|
|
|
- **Step 3**: Defining the CNN Architecture:
|
|
```python
|
|
model = models.Sequential([
|
|
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
|
|
layers.MaxPooling2D((2, 2)),
|
|
layers.Conv2D(64, (3, 3), activation='relu'),
|
|
layers.MaxPooling2D((2, 2)),
|
|
layers.Conv2D(64, (3, 3), activation='relu')
|
|
])
|
|
```
|
|
|
|
- **Step 4**: Adding Dense Layers:
|
|
```python
|
|
model.add(layers.Flatten())
|
|
model.add(layers.Dense(64, activation='relu'))
|
|
model.add(layers.Dense(10))
|
|
```
|
|
|
|
**Compiling and Training the Model**:
|
|
|
|
- **Step 5**: Compiling the Model:
|
|
```python
|
|
model.compile(optimizer='adam',
|
|
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
|
metrics=['accuracy'])
|
|
```
|
|
|
|
- **Step 6**: Training the Model:
|
|
```python
|
|
history = model.fit(train_images, train_labels, epochs=10,
|
|
validation_data=(test_images, test_labels))
|
|
```
|
|
|
|
**Evaluating the Model**:
|
|
|
|
- **Step 7**: Evaluating the Model and Visualizing Results:
|
|
```python
|
|
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
plt.plot(history.history['accuracy'], label='accuracy')
|
|
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
|
|
plt.xlabel('Epoch')
|
|
plt.ylabel('Accuracy')
|
|
plt.ylim([0.5, 1])
|
|
plt.legend(loc='lower right')
|
|
plt.show()
|
|
```
|
|
|
|
## **Resources**
|
|
|
|
1. [TensorFlow Documentation](https://www.tensorflow.org/api_docs)
|
|
2. [Keras Documentation](https://keras.io/api/)
|
|
|