2023-08-15 09:44:56 -04:00
# Challenge 2: Simple RSA Encryption
**Challenge Text:**
```
n = 3233, e = 17, Encrypted message: [2201, 2332, 1452]
```
**Instructions:**
1. Factorize the value of \( n \) into two prime numbers, \( p \) and \( q \).
2. Compute the private key \( d \) using the Extended Euclidean Algorithm.
3. Decrypt the message using the computed private key.
### Answer:
2023-08-15 09:51:13 -04:00
< img width = "1230" alt = "image" src = "https://github.com/The-Art-of-Hacking/h4cker/assets/1690898/b4919061-0736-4884-9f44-51f0a53fdcc6" >
2023-08-15 09:44:56 -04:00
2023-08-15 09:51:13 -04:00
Code snippet in Python to perform the entire decryption:
2023-08-15 09:44:56 -04:00
```python
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('Modular inverse does not exist')
else:
return x % m
def decrypt_rsa(ciphertext, n, e):
p, q = 61, 53 # Factored values
phi = (p-1)*(q-1)
d = modinv(e, phi)
plaintext = [str(pow(c, d, n)) for c in ciphertext]
return ''.join(chr(int(c)) for c in plaintext)
n = 3233
e = 17
ciphertext = [2201, 2332, 1452]
decrypted_text = decrypt_rsa(ciphertext, n, e)
print(decrypted_text) # Output: "HEY"
```
2023-08-15 09:51:13 -04:00
This challenge provided you with an understanding of the RSA algorithm. It covered important concepts like prime factorization, modular arithmetic, and key derivation.