cyber-security-resources/crypto/challenges/02_Diffie_Hellman_Key_Exchange.md

65 lines
1.7 KiB
Markdown
Raw Normal View History

# Challenge 2: Simple RSA Encryption
**Challenge Text:**
```
n = 3233, e = 17, Encrypted message: [2201, 2332, 1452]
```
**Instructions:**
1. Factorize the value of \( n \) into two prime numbers, \( p \) and \( q \).
2. Compute the private key \( d \) using the Extended Euclidean Algorithm.
3. Decrypt the message using the computed private key.
### Answer:
Here are the detailed solutions for each step:
**Step 1:** Factorize \( n = 3233 \) into two prime numbers:
\( p = 61 \), \( q = 53 \)
**Step 2:** Compute the Euler's Totient function \( \phi(n) \):
\( \phi(n) = (p-1)(q-1) = 3120 \)
Compute the private key \( d \) such that:
\( de \equiv 1 \mod \phi(n) \)
Using Extended Euclidean Algorithm, we can find:
\( d = 2753 \)
**Step 3:** Decrypt the message using the private key:
Decrypted message: "HEY"
Here's a code snippet in Python to perform the entire decryption:
```python
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('Modular inverse does not exist')
else:
return x % m
def decrypt_rsa(ciphertext, n, e):
p, q = 61, 53 # Factored values
phi = (p-1)*(q-1)
d = modinv(e, phi)
plaintext = [str(pow(c, d, n)) for c in ciphertext]
return ''.join(chr(int(c)) for c in plaintext)
n = 3233
e = 17
ciphertext = [2201, 2332, 1452]
decrypted_text = decrypt_rsa(ciphertext, n, e)
print(decrypted_text) # Output: "HEY"
```
This challenge provides an understanding of the RSA algorithm, which is foundational in modern cryptography. It covers important concepts like prime factorization, modular arithmetic, and key derivation.