awesome-linux-containers/README.md
Jussi Nummelin 936176312e Add Kontena to list of container platforms
Kontena is one of the newer players on the container orchestration ecosystem, would be nice to see it on the list.

Disclaimer: I do work for Kontena Inc. :)
2017-07-04 14:05:33 +03:00

21 KiB
Raw Blame History

Awesome Linux Containers

Awesome

Table of Contents

Foundations

  • OPEN CONTAINER INITIATIVE
    The Open Container Initiative is a lightweight, open governance structure, to be formed under the auspices of the Linux Foundation, for the express purpose of creating open industry standards around container formats and runtime.
  • Cloud Native Computing Foundation
    The Cloud Native Computing Foundation will create and drive the adoption of a new set of common container technologies informed by technical merit and end user value, and inspired by Internet-scale computing.
  • Cloud Foundry Foundation
    The Cloud is our foundry.

Specifications

  • Open Container Specifications
    This project is where the Open Container Initiative Specifications are written. This is a work in progress.
  • App Container basics
    App Container (appc) is an open specification that defines several aspects of how to run applications in containers: an image format, runtime environment, and discovery protocol.
  • Systemd Container Interface
    Systemd is a suite of basic building blocks for a Linux system. It provides a system and service manager that runs as PID 1 and starts the rest of the system. If you write a container solution, please consider supporting the following interfaces.
  • Nulecule Specification
    Nulecule defines a pattern and model for packaging complex multi-container applications and services, referencing all their dependencies, including orchestration metadata in a container image for building, deploying, monitoring, and active management.

Clouds

  • Amazon EC2 Container Service
    Container management service that supports Docker containers and allows you to easily run applications on a managed cluster of Amazon EC2 instances.
  • Developer Cloud Platform
    PaaS from Docker creators.
  • Google Cloud Platform
    Run Docker containers on Google Cloud Platform, powered by Kubernetes. Google Container Engine actively schedules your containers, based on declared needs, on a managed cluster of virtual machines.
  • Jelastic
    Unlimited PaaS and Container-Based IaaS in a Joint Cloud Solution for DevOps.
  • Joyent
    High-Performance Container-Native Infrastructure for Today's Demanding Real-Time Web and Mobile Applications.
  • Kontena
    Kontena is a developer friendly, open source platform for orchestrating applications that are run on Docker containers. It simplifies deploying and running containerized applications on any infrastructure.
  • Kubernetes
    Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops.
  • Mesosphere
    The Mesosphere Datacenter Operating System (DCOS) is a new kind of operating system that spans all of the machines in your datacenter or cloud. It provides a highly elastic, and highly scalable way of deploying applications, services and big data infrastructure on shared resources.
  • OpenShift Origin
    OpenShift Origin is a distribution of Kubernetes optimized for continuous application development and multi-tenant deployment. Origin adds developer and operations-centric tools on top of Kubernetes to enable rapid application development, easy deployment and scaling, and long-term lifecycle maintenance for small and large teams.
  • Warden
    Manages isolated, ephemeral, and resource controlled environments. Part of Cloud Foundry - the open platform as a service project.
  • Virtuozzo DevOps
    A platform, built on Virtuozzo containers, that can be easily run on top of any bare-metal or virtual servers in any public or private cloud, to automate, optimize, and accelerate internal IT and development processes.
  • Rancher
    Rancher is a complete, open source platform for deploying and managing containers in production. It includes commercially-supported distributions of Kubernetes, Mesos, and Docker Swarm, making it easy to run containerized applications on any infrastructure.
  • Docker Swarm
    Docker Swarm is native clustering for Docker.
  • Azure Container Service
    Azure Container Service optimizes the configuration of popular open source tools and technologies specifically for Azure.
  • CIAO
    Cloud Integrated Advanced Orchestrator for Intel Clear Linux OS.

Operating Systems

  • CoreOs
    A lightweight Linux operating system designed for clustered deployments providing automation, security, and scalability for your most critical applications.
  • RancherOS
    RancherOS is a tiny Linux distro that runs the entire OS as Docker containers.
  • Project Atomic
    Project Atomic provides the best platform for your Linux Docker Kubernetes (LDK) application stack. Use immutable infrastructure to deploy and scale your containerized applications.
  • Snappy Ubuntu Core
    Ubuntu Core is the perfect system for large-scale cloud container deployments, bringing transactional updates to the worlds favourite container platform.
  • ResinOS
    A host OS tailored for containers, designed for reliability, proven in production.
  • Photon
    Photon OS is a minimal Linux container host designed to have a small footprint and tuned for VMware platforms. Photon is intended to invite collaboration around running containerized and Linux applications in a virtualized environment.
  • Clear Linux Project
    The Clear Linux Project for Intel Architecture is a distribution built for various Cloud use cases.
  • CargOS
    CargOS is a new lightweight, open source, platform for Docker hosts that aims for speed, manageability and security. Releases are built for 64-bit Intel/AMD CPUs.
  • OSv
    OSv is the open source operating system designed for the cloud. Built from the ground up for effortless deployment and management, with superior performance.

Hypervisors

  • Docker
    An open platform for distributed applications for developers and sysadmins. Standard de facto.
  • LXD
    Daemon based on liblxc offering a REST API to manage LXC containers.
  • OpenVZ
    OpenVZ is container-based virtualization for Linux. OpenVZ creates multiple secure, isolated Linux containers (otherwise known as VEs or VPSs) on a single physical server enabling better server utilization and ensuring that applications do not conflict.

Containers

  • runc
    runc is a CLI tool for spawning and running containers according to the OCS specification.
  • Bocker
    Docker implemented in around 100 lines of bash.
  • Rocket
    rkt (pronounced "rock-it") is a CLI for running app containers on Linux. rkt is designed to be composable, secure, and fast. Based on AppC specification.
  • LXC
    LXC is the well known set of tools, templates, library and language bindings. It's pretty low level, very flexible and covers just about every containment feature supported by the upstream kernel.
  • Vagga
    Vagga is a fully-userspace container engine inspired by Vagrant and Docker, specialized for development environments.
  • libct
    Libct is a containers management library which provides convenient API for frontend programs to rule a container during its whole lifetime.
  • libvirt
    A big toolkit to interact with the virtualization capabilities of recent versions of Linux (and other OSes).
  • systemd-nspawn
    Spawn a namespace container for debugging, testing and building. Part of systemd.
  • porto
    The main goal of Porto is to create a convenient, reliable interface over several Linux kernel mechanism such as cgroups, namespaces, mounts, networking etc.
  • udocker
    A basic user tool to execute simple containers in batch or interactive systems without root privileges.
  • Let Me Contain That For You
    LMCTFY is the open source version of Googles container stack, which provides Linux application containers.
  • cc-oci-runtime
    Intel Clear Linux OCI (Open Containers Initiative) compatible runtime.

Sandboxes

  • Firejail
    Firejail is a SUID sandbox program that reduces the risk of security breaches by restricting the running environment of untrusted applications using Linux namespaces, seccomp-bpf and Linux capabilities.
  • NsJail
    NsJail is a process isolation tool for Linux. It makes use of the namespacing, resource control, and seccomp-bpf syscall filter subsystems of the Linux kernel.
  • Subuser
    Securing the Linux desktop with Docker.
  • Snappy
    Snappy Ubuntu Core is a new rendition of Ubuntu with transactional updates - a minimal server image with the same libraries as todays Ubuntu, but applications are provided through a simpler mechanism.
  • xdg-app
    xdg-app is a system for building, distributing and running sandboxed desktop applications on Linux.
  • Bubblewrap
    Run applications in a sandbox using Linux namespaces without root privileges, with user namespacing provided via setuid binary.

Partial Access

  • nsenter
    Run program with namespaces of other processes. Part of the util-linux.
  • ip-netns
    Process network namespace management. Part of the iproute2.
  • unshare
    Run program with some namespaces unshared from parent. Part of the util-linux.
  • python-nsenter
    This Python package allows entering Linux kernel namespaces (mount, IPC, net, PID, user and UTS) by doing the "setns" syscall.
  • butter
    Python library to interface to low level linux features (inotify, fanotify, timerfd, signalfd, eventfd, containers) with asyncio support.
  • pyspaces
    Works with Linux namespaces through glibc with pure python.
  • CRIU
    Checkpoint/Restore In Userspace is a software tool for Linux operating system. Using this tool, you can freeze a running application (or part of it) and checkpoint it to a hard drive as a collection of files. CRIU integrated with Docker and LXC to implement Live migration of containers.

Dashboard

Best practices

  • The Twelve-Factor App
    The twelve-factor app is a methodology for building software-as-a-service apps.
  • Container Best Practices
    A collaborative project to document container-based application architecture, creation and management from Project Atomic.

Security

Tools

  • Docker bench security
    The Docker Bench for Security is a script that checks for dozens of common best-practices around deploying Docker containers in production.
  • CoreOS Clair
    Open Source Vulnerability Analysis for your Containers.
  • bane
    Custom AppArmor profile generator for docker containers.
  • OpenSCAP
    The OpenSCAP ecosystem provides multiple tools to assist administrators and auditors with assessment, measurement and enforcement of security baselines.
  • drydock
    Drydock provides a flexible way of assessing the security of your Docker daemon configuration and containers using editable audit templates.
  • trireme
    Security by segmentation for Docker and Kubernetes.
  • goss
    Quick and Easy server testing/validation.

Levels of security problems

  1. regular application
  • always untrusted -> know it
  • suid bit -> mount with nosuid
  • limit available syscall -> seccomp-bpf, grsec
  • leak to another container (bug in namespaces, filesystem) -> user namespaces with different uid inside for each container: 1000 in container - 14293 and 15398 outside; security modules like selinux or apparmor
  1. system services like cron, ssh
  • run as root -> isolate via bastion host or vm
  • using /dev -> "devices" control group
    The following device nodes are created in the container by default.
    The Docker images are also mounted with nodev, which means that even if a device node was pre-created in the image, it could not be used by processes within the container to talk to the kernel.
    /dev/console,/dev/null,/dev/zero,/dev/full,/dev/tty*,/dev/urandom,/dev/random,/dev/fuse
  • root calls -> capabilities (cap_sys_admin warning!)
    Here is the current list of capabilities that Docker uses: chown, dac_override, fowner, kill, setgid, setuid, setpcap, net_bind_service, net_raw, sys_chroot, mknod, setfcap, and audit_write.
    Docker removes several of these capabilities including the following:
    CAP_SETPCAP Modify process capabilities
    CAP_SYS_MODULE Insert/Remove kernel modules
    CAP_SYS_RAWIO Modify Kernel Memory
    CAP_SYS_PACCT Configure process accounting
    CAP_SYS_NICE Modify Priority of processes
    CAP_SYS_RESOURCE Override Resource Limits
    CAP_SYS_TIME Modify the system clock
    CAP_SYS_TTY_CONFIG Configure tty devices
    CAP_AUDIT_WRITE Write the audit log
    CAP_AUDIT_CONTROL Configure Audit Subsystem
    CAP_MAC_OVERRIDE Ignore Kernel MAC Policy
    CAP_MAC_ADMIN Configure MAC Configuration
    CAP_SYSLOG Modify Kernel printk behavior
    CAP_NET_ADMIN Configure the network
    CAP_SYS_ADMIN Catch all
    uses /proc, /sys -> remount ro, drop cap_sys_admin; security modules like selinux or apparmor; some part of this fs are "namespace-aware"
    Docker mounts these file systems into the container as "read-only" mount points.
    . /sys
    . /proc/sys
    . /proc/sysrq-trigger
    . /proc/irq
    . /proc/bus
    Copy-on-write file systems
    Docker uses copy-on-write file systems. This means containers can use the same file system image as the base for the container. When a container writes content to the image, it gets written to a container specific file system. This prevents one container from seeing the changes of another container even if they wrote to the same file system image. Just as important, one container can not change the image content to effect the processes in another container.
  • uid 0 -> user namespaces, uid 0 mappet to random uid outside
  1. system services like devices, network, filesystems
  • root -> more of services should work on host outside; isolate sensitive functions, run as non-privileged context
  • full privileges -> isolate on kernel level
  1. kernel drivers, network stack, security policies
  • absolute privileges -> run it in separate vm
  1. general like immutable infrastructure
  • container is ro
  • write to small separate rw nosuid part

src
src

Technologies for security

Things are better. For example, most modern container technologies can make use of Linux's built-in security tools such as:
AppArmor, SELinux and Seccomp policies;
Grsecurity;
Control groups (cgroups);
Kernel namespaces
src

Sure, you're deploying seccomp, but you can't use selinux inside your container, because the policy isn't per-namespace (?? lxc uses apparmore for each container...)
sVirt - selinux for kvm
src

Major kernel subsystems are not namespaced like:

  • SELinux
  • Cgroups
  • file systems under /sys
  • /proc/sys, /proc/sysrq-trigger, /proc/irq, /proc/bus

Devices are not namespaced:

  • /dev/mem
  • /dev/sd* file system devices
  • kernel modules

If you can communicate or attack one of these as a privileged process, you can own the system.
src

Another Information Sources

  • sysdig-container-ecosystem
    The ecosystem of awesome new technologies emerging around containers and microservices can be a little overwhelming, to say the least. We thought we might be able to help: welcome to the Container Ecosystem Project.
  • doger.io
    This page is an attempt to document the ins and outs of containers on Linux. This is not just restricted to programmers looking to implement containers or use container like features in their own code but also Sysadmins and Users who want to get more of a handle on how containers work 'under the hood'.