Web-application firewalls (WAFs) from security standpoint.
Go to file
2019-01-29 21:20:58 +05:30
images Delete text 2019-01-08 12:10:19 +05:30
papers Added new stuffs 2019-01-26 23:09:49 +05:30
presentations Added stuff more . 2019-01-26 10:16:05 +05:30
LICENSE Initial commit 2019-01-08 10:27:06 +05:30
README.md added more info 2019-01-29 21:20:58 +05:30

Awesome WAF Awesome

A curated list of awesome WAF stuff.

Main Logo

A Concise Definition: A web application firewall is a form of firewall with a set of configured rules that controls input, output, and/or access from, to, or by an application or service. It operates by monitoring and potentially blocking the input, output, or system service calls that do not meet the configured policy of the firewall. (Source Wikipedia)

Feel free to contribute.

Contents:

Awesome WAFs List

360 WangZhanBao A WAF solution from 360 Security Team.
Airlock The Airlock Web Application Firewall offers a unique combination of protective mechanisms for web applications. Each access is systematically monitored and filtered at every level. It features reverse proxy, central checkpoint, filtering, API security and dynamic whitelisting.
Anquanbao A cloud based WAF solution for enterprises featuring big data analysis, clustering solutions, content optimisations, and access accelerations.
Armor A virtual WAF solution by Armor technologies which protects web-applications from OWASP top 10 attacks and features accurate response and remediation via applied intelligence from their threat centre.
Application Security Manager A comprehensive web application firewall from F5 Networks that protects apps and data from known and unknown threats, defends against bots that bypass standard protections, and virtually patches app vulnerabilities.
Amazon AWS WAF A WAF solution from Amazon AWS that features full time web-traffic filtering, virtual patching, traffic visibility, attack transparency integrated with customisable rules.
Baidu Cloud WAF A cloud based protection system from Baidu to effectively defend against web application attacks. It features cloud based real-time protections, load balancing, DDoS protection and its own content-delivery network.
Barracuda A WAF solution from Barracuda Networks featuring web aplication, API, and mobile apps against various attacks. Beside it provides DDoS protections, automated attack and bot protections, access controls and authentication protections.
BinarySEC A solution from BinarySec which provides all round security protections from many kinds of threats. BinarySec WAF allows active whitelisting while peotecting your site from major known threats and malware.
ChinaCache A featured firewall for China which features its own content-delivery network, virtual patching and constant threat discovery transparency report.
Kona Site Defender A cloud based WAF solution from Akamai technologies that feaures a proprietary WAF rule set, created and automatically updated based on visibility into the latest attacks with protections. It provides API security integrated with DevOps security, report visibility, etc.

Testing Methodology

Alright, now lets see the approach of testing WAFs. Wait, before that we need to know how they work right? Here you go.

How WAFs Work:

  • Using a set of rules to distinguish between normal requests and malicious requests.
  • Sometimes they use a learning mode to add rules automatically through learning about user behaviour.

Operation Modes:

  • Negative Model (Blacklist based) - One that defines what is not allowed. Eg. Block all <script>*</script> inputs.
  • Positive Model (Whitelist based) - One that defines what is allowed and rejects everything else.
  • Mixed/Hybrid Model (Inclusive model) - One that uses a mixed concept of blacklisting and whitelisting stuff.

Where To Look:

  • Always look out for common ports that expose that a WAF 80, 443, 8000, 8008, 8080, 8088.

Tip: You can use automate this easily by commandline using a screenshot taker like WebScreenShot.

  • Some WAFs set their own cookies in requests (eg. Citrix Netscaler, Yunsuo WAF).
  • Some associate themselves with separate headers (eg. Anquanbao WAF, Amazon AWS WAF).
  • Some often alter headers and jumble characters to confuse attacker (eg. Citrix Netscaler, Big IP WAF).
  • Some WAFs expose themselves in the response content (eg. DotDefender, Armor, truShield Sitelock).
  • Other WAFs reply with unusual response codes upon malicious requests (eg. WebKnight).

Detection Techniques:

  1. Make a normal GET request from a browser, intercept and test response headers (specifically cookies).
  2. Make a request from command line (eg. cURL), and test response content and headers (no user-agent included).
  3. If there is a login page somewhere, try some common (easily detectable) payloads like ' or 1 = 1 --.
  4. If there is some search box or input field somewhere, try detecting payloads like <script>alert()</script>.
  5. Make GET requests with outdated protocols like HTTP/0.9 (HTTP/0.9 does not support POST type queries).
  6. Drop Action Technique - Send a raw crafted FIN/RST packet to server and identify response.

Tip: This method could be easily achieved with tools like HPing3 or Scapy.

  1. Side Channel Attacks - Examine the timing behaviour of the request and response content.

WAF Detection

Wanna detect WAFs? Lets see how.

Note

: This section contains manual WAF detection techniques. You might want to switch over to next section.

360 Firewall
  • Detectability: Easy
  • Detection Methodology:
    • Returns status code 493 upon unusual requests.
    • On viewing source-code of error page, you will find reference to wzws-waf-cgi/ directory.
    • Source code may contain reference to wangshan.360.cn URL.
    • Response headers contain X-Powered-By-360WZB Header.
aeSecure
  • Detectability: Moderate
  • Detection Methodology:
    • Blocked response content contains aesecure_denied.png image (view source to see).
    • Response headers contain aeSecure-code value.
Airlock (Phion/Ergon)
  • Detectability: Moderate/Difficult
  • Detection Methodology:
    • Set-Cookie headers may contain AL-SESS={some value} value (case insensitive).
    • Response headers may contain AL-LB={some value} value (case insensitive).
Anquanbao WAF
  • Detectability: Easy
  • Detection Methodology:
    • Returns blocked HTTP response code 405 upon malicious requests.
    • Blocked response content may contain /aqb_cc/error/ or hidden_intercept_time.
    • Response headers contain X-Powered-by-Anquanbao header field.
Armor Defense
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response content contains warning
      This request has been blocked by website protection from Armor.
Application Security Manager (F5 Networks)
  • Detectability: Difficult
  • Detection Methodology:
    • Blocked response content contains warning
      The requested URL was rejected. Please consult with your administrator.
Amazon AWS WAF
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers contain AWS value.
    • Blocked response status code return 403 Forbidden response.
Yunjiasu WAF (Baidu)
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers contain Yunjiasu-ngnix value.
Barracuda WAF
  • Detectability: Moderate
  • Detection Methodology:
    • Response cookies may contain barra_counter_session value.
    • Response headers may contain barracude_ keyword.
BIG-IP ASM (F5 Networks)
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers may contain BigIP or F5 keyword value.
    • Response header fields may contain X-WA-Info header.
    • Response headers might have jumbled X-Cnection field value.
BinarySec WAF
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers contain binarysec keyword value.
BlockDos
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers may contain reference to BlockDos.net URL.
ChinaCache Firewall
  • Detectability: Easy
  • Detection Methodology:
    • Response headers contain Powered-by-ChinaCache field.
    • Blocked response codes contain 400 Bad Request error upon malicious request.
ACE XML Gateway (Cisco)
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers have ACE XML Gateway value.
Cloudbric
  • Detectability: Moderate
  • Detection Methodology:
    • Response content has Cloudbric and Malicious Code Detected values.
Cloudflare
  • Detectability: Easy
  • Detection Methodology:
    • Response headers might have cf-ray field value.
    • Server header field has value cloudflare.
    • Set-Cookie response headers have __cfuid= cookie field.
    • Page content might have Attention Required! or Cloudflare Ray ID:.
    • You may encounter CLOUDFLARE_ERROR_500S_BOX upon hitting invalid URLs.
Cloudfront (Amazon)
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response content contains Error from cloudfront error upon malicious request.
Comodo Firewall
  • Detectability: Easy
  • Detection Methodology:
    • Response headers contain Protected by COMODO WAF value.
CrawlProtect (Jean-Denis Brun)
  • Detectability: Easy
  • Detection Methodology:
    • Response content contains value
      This site is protected by CrawlProtect.
IBM WebSphere DataPower
  • Detectability: Moderate
  • Detection Methodology:
    • Response headers contains field value value X-Backside-Transport with value OK or FAIL.
Deny-All Firewall
  • Detectability: Difficult
  • Detection Methodology:
    • Response content contains value Condition Intercepted.
    • Set-Cookie header contains cookie field sessioncookie.
Distil Firewall
  • Detectability: Easy
  • Detection Methodology:
    • Response headers contain field value X-Distil-CS in all requests.
DoSArrest Internet Security
  • Detectability: Easy
  • Detection Methodology:
    • Response headers contain field value X-DIS-Request-ID.
    • Response headers might contain DOSarrest keyword.
dotDefender
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response content contains value
      dotDefender Blocked Your Request.
    • Blocked response headers contain X-dotDefender-denied field value.
EdgeCast (Verizon)
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response content contains value
      Please contact the site administrator, and provide the following Reference ID:EdgeCast Web Application Firewall (Verizon).
    • Blocked response code returns 400 Bad Request on malicious requests.
Expression Engine (EllisLab)
  • Detectability: Difficult
  • Detection Methodology:
    • Blocked response content contains value Invalid GET Request upon malicious GET queries.
    • Blocked POST type queries contain Invalid POST Request in response content.
FortiWeb Firewall
  • Detectability: Moderate
  • Detection Methodology:
    • Blocked response content contains value .fgd_icon keyword.
    • Response headers contain FORTIWAFSID= on malicious requests.
    • Set-Cookie header has cookie field cookiesession1=.
HyperGuard Firewall
  • Detectability: Difficult
  • Detection Methodology:
    • Set-Cookie header has cookie field ODSESSION= in response headers.
Imperva Incapsula
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response page content may contain:
      • Incapsula incident ID keyword.
      • _Incapsula_Resource keyword.
      • subject=WAF Block Page keyword.
    • Normal GET request headers contain visid_incap value.
    • Response headers may contain X-Iinfo header field name.
    • Set-Cookie header has cookie field incap_ses in response headers.
Jiasule Firewall
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response page contains reference to static.jiasule.com/static/js/http_error.js URL.
    • Set-Cookie header has cookie field __jsluid= in response headers.
    • Response headers have jiasule-WAF or jsl_tracking keywords.
    • Blocked response content has notice-jiasule keyword.
KnownSec Firewall
  • Detectability: Easy
  • Detection Methodology:
    • Blocked response page displays ks-waf-error.png image (view source to see).
KONA Site Defender (Akamai)
  • Detectability: Easy
  • Detection Methodology:
    • Headers contain AkamaiGHost keyword.
ModSecurity (Trustwave)
  • Detectability: Moderate/Difficult
  • Detection Methodology:
    • Blocked response page contains:
      • This error was generated by Mod_Security text.
      • One or more things in your request were suspicious text.
      • rules of the mod_security module text.
    • Response headers may contain Mod_Security or NYOB keywords.

Evasion Techniques

Lets look at some methods of bypassing and evading WAFs.

Awesome Tools

WAF Fingerprinting:

1. Fingerprinting with NMap:

Source: GitHub | SVN

  • Normal WAF Fingerprinting
nmap --script=http-waf-fingerprint <target>
  • Intensive WAF Fingerprinting
nmap --script=http-waf-fingerprint  --script-args http-waf-fingerprint.intensive=1 <target>
  • Generic Detection
nmap --script=http-waf-detect <target>

2. Fingerprinting with WafW00f:

Source: GitHub | Pypi

wafw00f <target>

WAF Testing:

WAF Evading:

1. Evading WAFs with SQLMap Tamper Scripts:

  • General Tamper Testing
sqlmap -u <target> --level=5 --risk=3 -p 'item1' --tamper=apostrophemask,apostrophenullencode,base64encode,between,chardoubleencode,charencode,charunicodeencode,equaltolike,greatest,ifnull2ifisnull,multiplespaces,nonrecursivereplacement,percentage,randomcase,securesphere,space2comment,space2plus,space2randomblank,unionalltounion,unmagicquotes
  • MSSQL Tamper Testing
sqlmap -u <target> --level=5 --risk=3 -p 'item1' --tamper=between,charencode,charunicodeencode,equaltolike,greatest,multiplespaces,nonrecursivereplacement,percentage,randomcase,securesphere,sp_password,space2comment,space2dash,space2mssqlblank,space2mysqldash,space2plus,space2randomblank,unionalltounion,unmagicquotes
  • MySQL Tamper Testing
sqlmap -u <target> --level=5 --risk=3 -p 'item1' --tamper=between,bluecoat,charencode,charunicodeencode,concat2concatws,equaltolike,greatest,halfversionedmorekeywords,ifnull2ifisnull,modsecurityversioned,modsecurityzeroversioned,multiplespaces,nonrecursivereplacement,percentage,randomcase,securesphere,space2comment,space2hash,space2morehash,space2mysqldash,space2plus,space2randomblank,unionalltounion,unmagicquotes,versionedkeywords,versionedmorekeywords,xforwardedfor
  • Generic Tamper Testing
sqlmap -u <target> --level=5 --risk=3 -p 'item1' --tamper=apostrophemask,apostrophenullencode,appendnullbyte,base64encode,between,bluecoat,chardoubleencode,charencode,charunicodeencode,concat2concatws,equaltolike,greatest,halfversionedmorekeywords,ifnull2ifisnull,modsecurityversioned,modsecurityzeroversioned,multiplespaces,nonrecursivereplacement,percentage,randomcase,randomcomments,securesphere,space2comment,space2dash,space2hash,space2morehash,space2mssqlblank,space2mssqlhash,space2mysqlblank,space2mysqldash,space2plus,space2randomblank,sp_password,unionalltounion,unmagicquotes,versionedkeywords,versionedmorekeywords

2. Evading WAFs with WAFNinja

Source: GitHub

  • Fuzzing
python wafninja.py fuzz -u <target> -t xss
  • Bypassing
python wafninja.py bypass -u <target> -p "name=<payload>&Submit=Submit" -t xss
  • Insert Fuzzing
python wafninja.py insert-fuzz -i select -e select -t sql

3. Evading WAFs with WhatWaf:

Source: GitHub

whatwaf -u <target> --ra --throttle 2

Presentations & Research Papers

Presentations:

Research Papers: