text-generation-webui/README.md
2023-04-18 12:47:43 -03:00

313 lines
16 KiB
Markdown

# Text generation web UI
A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation.
|![Image1](https://github.com/oobabooga/screenshots/raw/main/qa.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/cai3.png) |
|:---:|:---:|
|![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png) | ![Image4](https://github.com/oobabooga/screenshots/raw/main/galactica.png) |
## Features
* Dropdown menu for switching between models
* Notebook mode that resembles OpenAI's playground
* Chat mode for conversation and role playing
* Instruct mode compatible with Alpaca, Vicuna, Open Assistant, Dolly, Koala, and ChatGLM formats **\*NEW!\***
* Nice HTML output for GPT-4chan
* Markdown output for [GALACTICA](https://github.com/paperswithcode/galai), including LaTeX rendering
* [Custom chat characters](https://github.com/oobabooga/text-generation-webui/wiki/Custom-chat-characters)
* Advanced chat features (send images, get audio responses with TTS)
* Very efficient text streaming
* Parameter presets
* 8-bit mode
* Layers splitting across GPU(s), CPU, and disk
* CPU mode
* [FlexGen](https://github.com/oobabooga/text-generation-webui/wiki/FlexGen)
* [DeepSpeed ZeRO-3](https://github.com/oobabooga/text-generation-webui/wiki/DeepSpeed)
* API [with](https://github.com/oobabooga/text-generation-webui/blob/main/api-example-stream.py) streaming and [without](https://github.com/oobabooga/text-generation-webui/blob/main/api-example.py) streaming
* [LLaMA model](https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model)
* [4-bit GPTQ mode](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-(4-bit-mode))
* [llama.cpp](https://github.com/oobabooga/text-generation-webui/wiki/llama.cpp-models) **\*NEW!\***
* [RWKV model](https://github.com/oobabooga/text-generation-webui/wiki/RWKV-model)
* [LoRA (loading and training)](https://github.com/oobabooga/text-generation-webui/wiki/Using-LoRAs)
* Softprompts
* [Extensions](https://github.com/oobabooga/text-generation-webui/wiki/Extensions)
## Installation
### One-click installers
[oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_windows.zip)
[oobabooga-linux.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_linux.zip)
[oobabooga-macos.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_macos.zip)
Just download the zip above, extract it, and double click on "start". The web UI and all its dependencies will be installed in the same folder.
Source codes: https://github.com/oobabooga/one-click-installers
> **Note**
>
> Thanks to [@jllllll](https://github.com/jllllll) and [@ClayShoaf](https://github.com/ClayShoaf), the Windows 1-click installer now sets up 8-bit and 4-bit requirements out of the box. No additional installation steps are necessary.
>
> Thanks to [@xNul](https://github.com/xNul), Linux and MacOS installers are now also available.
> **Note**
>
> There is no need to run the installer as admin.
### Manual installation using Conda
Recommended if you have some experience with the command-line.
On Windows, I additionally recommend carrying out the installation on WSL instead of the base system: [WSL installation guide](https://github.com/oobabooga/text-generation-webui/wiki/WSL-installation-guide).
#### 0. Install Conda
https://docs.conda.io/en/latest/miniconda.html
On Linux or WSL, it can be automatically installed with these two commands:
```
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh"
bash Miniconda3.sh
```
Source: https://educe-ubc.github.io/conda.html
#### 0.1 (Ubuntu/WSL) Install build tools
```
sudo apt install build-essential
```
#### 1. Create a new conda environment
```
conda create -n textgen python=3.10.9
conda activate textgen
```
#### 2. Install Pytorch
| System | GPU | Command |
|--------|---------|---------|
| Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` |
| Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` |
| MacOS + MPS (untested) | Any | `pip3 install torch torchvision torchaudio` |
The up to date commands can be found here: https://pytorch.org/get-started/locally/.
#### 2.1 Special instructions
* MacOS users: https://github.com/oobabooga/text-generation-webui/pull/393
* AMD users: https://rentry.org/eq3hg
#### 3. Install the web UI
```
git clone https://github.com/oobabooga/text-generation-webui
cd text-generation-webui
pip install -r requirements.txt
```
### Alternative: manual Windows installation
As an alternative to the recommended WSL method, you can install the web UI natively on Windows using this guide. It will be a lot harder and the performance may be slower: [Windows installation guide](https://github.com/oobabooga/text-generation-webui/wiki/Windows-installation-guide).
### Alternative: Docker
```
cp docker/{Dockerfile,docker-compose.yml,.dockerignore} .
cp docker/.env.example .env
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model
docker compose up --build
```
You need to have docker compose v2.17 or higher installed in your system. To see how to install docker compose itself, see the guide in https://github.com/oobabooga/text-generation-webui/docker/.
Contributed by [@loeken](https://github.com/loeken) in [#633](https://github.com/oobabooga/text-generation-webui/pull/633)
### Updating the requirements
From time to time, the `requirements.txt` changes. To update, use this command:
```
conda activate textgen
cd text-generation-webui
pip install -r requirements.txt --upgrade
```
## Downloading models
Models should be placed inside the `models` folder.
[Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads) is the main place to download models. These are some examples:
* [Pythia](https://huggingface.co/models?sort=downloads&search=eleutherai%2Fpythia+deduped)
* [OPT](https://huggingface.co/models?search=facebook/opt)
* [GALACTICA](https://huggingface.co/models?search=facebook/galactica)
* [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)
You can automatically download a model from HF using the script `download-model.py`:
python download-model.py organization/model
For example:
python download-model.py facebook/opt-1.3b
If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary.
#### GPT-4chan
[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options:
* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model)
* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/)
The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version.
After downloading the model, follow these steps:
1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`.
2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json).
3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan):
```
python download-model.py EleutherAI/gpt-j-6B --text-only
```
## Starting the web UI
conda activate textgen
cd text-generation-webui
python server.py
Then browse to
`http://localhost:7860/?__theme=dark`
Optionally, you can use the following command-line flags:
#### Basic settings
| Flag | Description |
|--------------------------------------------|-------------|
| `-h`, `--help` | Show this help message and exit. |
| `--notebook` | Launch the web UI in notebook mode, where the output is written to the same text box as the input. |
| `--chat` | Launch the web UI in chat mode. |
| `--model MODEL` | Name of the model to load by default. |
| `--lora LORA` | Name of the LoRA to apply to the model by default. |
| `--model-dir MODEL_DIR` | Path to directory with all the models. |
| `--lora-dir LORA_DIR` | Path to directory with all the loras. |
| `--model-menu` | Show a model menu in the terminal when the web UI is first launched. |
| `--no-stream` | Don't stream the text output in real time. |
| `--settings SETTINGS_FILE` | Load the default interface settings from this json file. See `settings-template.json` for an example. If you create a file called `settings.json`, this file will be loaded by default without the need to use the `--settings` flag. |
| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. |
| `--verbose` | Print the prompts to the terminal. |
#### Accelerate/transformers
| Flag | Description |
|---------------------------------------------|-------------|
| `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow.|
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. |
| `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maxmimum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. |
| `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
| `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. |
| `--load-in-8bit` | Load the model with 8-bit precision.|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. |
| `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. |
| `--sdp-attention` | Use torch 2.0's sdp attention. |
| `--trust-remote-code` | Set trust_remote_code=True while loading a model. Necessary for ChatGLM. |
#### llama.cpp
| Flag | Description |
|-------------|-------------|
| `--threads` | Number of threads to use in llama.cpp. |
#### GPTQ
| Flag | Description |
|---------------------------|-------------|
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
| `--groupsize GROUPSIZE` | Group size. |
| `--pre_layer PRE_LAYER` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. |
| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models.
| `--no-quant_attn` | (triton) Disable quant attention. If you encounter incoherent results try disabling this.
| `--no-warmup_autotune` | (triton) Disable warmup autotune.
| `--no-fused_mlp` | (triton) Disable fused mlp. If you encounter "Unexpected mma -> mma layout conversion" try disabling this.
#### FlexGen
| Flag | Description |
|------------------|-------------|
| `--flexgen` | Enable the use of FlexGen offloading. |
| `--percent PERCENT [PERCENT ...]` | FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0). |
| `--compress-weight` | FlexGen: Whether to compress weight (default: False).|
| `--pin-weight [PIN_WEIGHT]` | FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%). |
#### DeepSpeed
| Flag | Description |
|---------------------------------------|-------------|
| `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. |
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. |
#### RWKV
| Flag | Description |
|---------------------------------|-------------|
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. |
#### Gradio
| Flag | Description |
|---------------------------------------|-------------|
| `--listen` | Make the web UI reachable from your local network. |
| `--listen-host LISTEN_HOST` | The hostname that the server will use. |
| `--listen-port LISTEN_PORT` | The listening port that the server will use. |
| `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. |
| `--auto-launch` | Open the web UI in the default browser upon launch. |
| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" |
Out of memory errors? [Check the low VRAM guide](https://github.com/oobabooga/text-generation-webui/wiki/Low-VRAM-guide).
## Presets
Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup.
By default, 10 presets by NovelAI and KoboldAI are included. These were selected out of a sample of 43 presets after applying a K-Means clustering algorithm and selecting the elements closest to the average of each cluster.
[Visualization](https://user-images.githubusercontent.com/112222186/228956352-1addbdb9-2456-465a-b51d-089f462cd385.png)
## System requirements
Check the [wiki](https://github.com/oobabooga/text-generation-webui/wiki/System-requirements) for some examples of VRAM and RAM usage in both GPU and CPU mode.
## Contributing
Pull requests, suggestions, and issue reports are welcome.
You are also welcome to review open pull requests.
Before reporting a bug, make sure that you have:
1. Created a conda environment and installed the dependencies exactly as in the *Installation* section above.
2. [Searched](https://github.com/oobabooga/text-generation-webui/issues) to see if an issue already exists for the issue you encountered.
## Credits
- Gradio dropdown menu refresh button, code for reloading the interface: https://github.com/AUTOMATIC1111/stable-diffusion-webui
- Verbose preset: Anonymous 4chan user.
- NovelAI and KoboldAI presets: https://github.com/KoboldAI/KoboldAI-Client/wiki/Settings-Presets
- Code for early stopping in chat mode, code for some of the sliders: https://github.com/PygmalionAI/gradio-ui/