2023-03-16 20:35:53 -04:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-03-25 00:18:32 -04:00
|
|
|
import torch
|
2023-03-29 21:50:58 -04:00
|
|
|
from peft import PeftModel
|
2023-10-26 22:39:51 -04:00
|
|
|
from transformers import is_torch_xpu_available
|
2023-03-25 00:18:32 -04:00
|
|
|
|
2023-03-16 20:35:53 -04:00
|
|
|
import modules.shared as shared
|
2023-05-21 21:42:34 -04:00
|
|
|
from modules.logging_colors import logger
|
2023-06-05 22:29:29 -04:00
|
|
|
from modules.models import reload_model
|
2023-03-23 20:56:26 -04:00
|
|
|
|
2023-04-06 23:15:45 -04:00
|
|
|
|
2023-04-14 13:52:06 -04:00
|
|
|
def add_lora_to_model(lora_names):
|
2023-07-09 00:03:43 -04:00
|
|
|
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
|
2023-06-19 11:31:24 -04:00
|
|
|
add_lora_autogptq(lora_names)
|
2024-02-06 09:21:17 -05:00
|
|
|
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader in ['ExLlamav2', 'ExLlamav2_HF']:
|
2023-10-14 15:12:41 -04:00
|
|
|
add_lora_exllamav2(lora_names)
|
2023-06-19 11:31:24 -04:00
|
|
|
else:
|
|
|
|
add_lora_transformers(lora_names)
|
2023-03-16 20:35:53 -04:00
|
|
|
|
2023-06-05 22:29:29 -04:00
|
|
|
|
2023-08-10 12:54:28 -04:00
|
|
|
def get_lora_path(lora_name):
|
|
|
|
p = Path(lora_name)
|
|
|
|
if p.exists():
|
|
|
|
lora_name = p.parts[-1]
|
|
|
|
|
|
|
|
return Path(f"{shared.args.lora_dir}/{lora_name}")
|
|
|
|
|
|
|
|
|
2023-10-14 15:12:41 -04:00
|
|
|
def add_lora_exllamav2(lora_names):
|
|
|
|
|
|
|
|
from exllamav2 import ExLlamaV2Lora
|
|
|
|
|
|
|
|
if isinstance(shared.model.loras, list):
|
|
|
|
for lora in shared.model.loras:
|
|
|
|
lora.unload()
|
|
|
|
|
|
|
|
if len(lora_names) > 0:
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
|
|
|
shared.model.loras = []
|
|
|
|
for lora_name in lora_names:
|
|
|
|
lora_path = get_lora_path(lora_name)
|
2024-02-06 09:21:17 -05:00
|
|
|
if shared.model.__class__.__name__ == 'Exllamav2Model':
|
|
|
|
lora = ExLlamaV2Lora.from_directory(shared.model.model, str(lora_path))
|
|
|
|
else:
|
|
|
|
lora = ExLlamaV2Lora.from_directory(shared.model.ex_model, str(lora_path))
|
|
|
|
|
2023-10-14 15:12:41 -04:00
|
|
|
shared.model.loras.append(lora)
|
|
|
|
|
|
|
|
shared.lora_names = lora_names
|
|
|
|
else:
|
|
|
|
shared.lora_names = []
|
|
|
|
shared.model.loras = None
|
|
|
|
|
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
def add_lora_autogptq(lora_names):
|
2023-10-14 15:12:41 -04:00
|
|
|
'''
|
|
|
|
Adapted from https://github.com/Ph0rk0z/text-generation-webui-testing
|
|
|
|
'''
|
2023-06-05 22:29:29 -04:00
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
try:
|
|
|
|
from auto_gptq import get_gptq_peft_model
|
|
|
|
from auto_gptq.utils.peft_utils import GPTQLoraConfig
|
|
|
|
except:
|
|
|
|
logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.")
|
|
|
|
return
|
2023-06-05 22:29:29 -04:00
|
|
|
|
2023-07-12 14:33:25 -04:00
|
|
|
if len(lora_names) == 0:
|
2023-07-09 00:03:43 -04:00
|
|
|
reload_model()
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
shared.lora_names = []
|
|
|
|
return
|
2023-06-05 22:29:29 -04:00
|
|
|
else:
|
2023-06-19 11:31:24 -04:00
|
|
|
if len(lora_names) > 1:
|
|
|
|
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
|
|
|
|
|
|
|
|
peft_config = GPTQLoraConfig(
|
|
|
|
inference_mode=True,
|
|
|
|
)
|
|
|
|
|
2023-08-10 12:54:28 -04:00
|
|
|
lora_path = get_lora_path(lora_names[0])
|
2023-06-19 11:31:24 -04:00
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
|
|
|
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path)
|
|
|
|
shared.lora_names = [lora_names[0]]
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def add_lora_transformers(lora_names):
|
|
|
|
prior_set = set(shared.lora_names)
|
|
|
|
added_set = set(lora_names) - prior_set
|
|
|
|
removed_set = prior_set - set(lora_names)
|
|
|
|
|
|
|
|
# If no LoRA needs to be added or removed, exit
|
|
|
|
if len(added_set) == 0 and len(removed_set) == 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
# Add a LoRA when another LoRA is already present
|
2023-10-22 15:06:22 -04:00
|
|
|
if len(removed_set) == 0 and len(prior_set) > 0 and "__merged" not in shared.model.peft_config.keys():
|
2023-12-19 23:54:32 -05:00
|
|
|
logger.info(f"Adding the LoRA(s) named {added_set} to the model")
|
2023-06-19 11:31:24 -04:00
|
|
|
for lora in added_set:
|
2023-08-10 12:54:28 -04:00
|
|
|
shared.model.load_adapter(get_lora_path(lora), lora)
|
2023-06-19 11:31:24 -04:00
|
|
|
|
2023-10-22 15:06:22 -04:00
|
|
|
if len(lora_names) > 1:
|
|
|
|
merge_loras()
|
|
|
|
|
2023-11-19 10:59:29 -05:00
|
|
|
shared.lora_names = lora_names
|
2023-06-19 11:31:24 -04:00
|
|
|
return
|
|
|
|
|
|
|
|
# If any LoRA needs to be removed, start over
|
|
|
|
if len(removed_set) > 0:
|
2023-11-19 10:55:25 -05:00
|
|
|
shared.model = shared.model.unload()
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
if len(lora_names) > 0:
|
|
|
|
params = {}
|
|
|
|
if not shared.args.cpu:
|
2023-07-12 14:33:25 -04:00
|
|
|
if shared.args.load_in_4bit or shared.args.load_in_8bit:
|
2023-07-07 01:24:07 -04:00
|
|
|
params['peft_type'] = shared.model.dtype
|
|
|
|
else:
|
|
|
|
params['dtype'] = shared.model.dtype
|
|
|
|
if hasattr(shared.model, "hf_device_map"):
|
|
|
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
2023-08-10 12:54:28 -04:00
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, get_lora_path(lora_names[0]), adapter_name=lora_names[0], **params)
|
2023-06-19 11:31:24 -04:00
|
|
|
for lora in lora_names[1:]:
|
2023-08-10 12:54:28 -04:00
|
|
|
shared.model.load_adapter(get_lora_path(lora), lora)
|
2023-06-19 11:31:24 -04:00
|
|
|
|
2023-10-22 15:06:22 -04:00
|
|
|
if len(lora_names) > 1:
|
|
|
|
merge_loras()
|
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu:
|
|
|
|
shared.model.half()
|
|
|
|
if not hasattr(shared.model, "hf_device_map"):
|
2023-07-17 20:27:18 -04:00
|
|
|
if torch.backends.mps.is_available():
|
2023-06-19 11:31:24 -04:00
|
|
|
device = torch.device('mps')
|
|
|
|
shared.model = shared.model.to(device)
|
2023-10-26 22:39:51 -04:00
|
|
|
elif is_torch_xpu_available():
|
|
|
|
device = torch.device("xpu:0")
|
|
|
|
shared.model = shared.model.to(device)
|
2023-06-19 11:31:24 -04:00
|
|
|
else:
|
|
|
|
shared.model = shared.model.cuda()
|
2023-10-23 16:07:17 -04:00
|
|
|
|
2023-11-19 10:55:25 -05:00
|
|
|
shared.lora_names = lora_names
|
|
|
|
|
2023-10-23 16:07:17 -04:00
|
|
|
|
|
|
|
def merge_loras():
|
|
|
|
if len(list({shared.model.peft_config[adapter].r for adapter in shared.model.peft_config.keys()})) > 1:
|
|
|
|
logger.warning("The loaded LoRAs cannot be merged, as they have dissimilar ranks. Only the first one will be active.")
|
|
|
|
return
|
|
|
|
|
|
|
|
shared.model.add_weighted_adapter(shared.lora_names, [1] * len(shared.lora_names), "__merged")
|
|
|
|
shared.model.set_adapter("__merged")
|