2023-03-16 20:35:53 -04:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-03-25 00:18:32 -04:00
|
|
|
import torch
|
2023-03-29 21:50:58 -04:00
|
|
|
from peft import PeftModel
|
2023-03-25 00:18:32 -04:00
|
|
|
|
2023-03-16 20:35:53 -04:00
|
|
|
import modules.shared as shared
|
2023-05-21 21:42:34 -04:00
|
|
|
from modules.logging_colors import logger
|
2023-06-05 22:29:29 -04:00
|
|
|
from modules.models import reload_model
|
2023-03-23 20:56:26 -04:00
|
|
|
|
2023-04-06 23:15:45 -04:00
|
|
|
|
2023-04-14 13:52:06 -04:00
|
|
|
def add_lora_to_model(lora_names):
|
2023-07-09 00:03:43 -04:00
|
|
|
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
|
2023-06-19 11:31:24 -04:00
|
|
|
add_lora_autogptq(lora_names)
|
2023-07-09 00:03:43 -04:00
|
|
|
elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF'] or shared.args.loader == 'ExLlama':
|
2023-06-19 11:31:24 -04:00
|
|
|
add_lora_exllama(lora_names)
|
|
|
|
else:
|
|
|
|
add_lora_transformers(lora_names)
|
2023-03-16 20:35:53 -04:00
|
|
|
|
2023-06-05 22:29:29 -04:00
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
def add_lora_exllama(lora_names):
|
2023-06-06 12:05:05 -04:00
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
try:
|
2023-06-24 19:24:17 -04:00
|
|
|
from exllama.lora import ExLlamaLora
|
2023-06-19 11:31:24 -04:00
|
|
|
except:
|
2023-06-24 19:24:17 -04:00
|
|
|
try:
|
|
|
|
from repositories.exllama.lora import ExLlamaLora
|
|
|
|
except:
|
|
|
|
logger.error("Could not find the file repositories/exllama/lora.py. Make sure that exllama is cloned inside repositories/ and is up to date.")
|
|
|
|
return
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
if len(lora_names) == 0:
|
2023-06-25 23:10:13 -04:00
|
|
|
if shared.model.__class__.__name__ == 'ExllamaModel':
|
|
|
|
shared.model.generator.lora = None
|
|
|
|
else:
|
|
|
|
shared.model.lora = None
|
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
shared.lora_names = []
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
if len(lora_names) > 1:
|
|
|
|
logger.warning('ExLlama can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
|
|
|
|
|
|
|
|
lora_path = Path(f"{shared.args.lora_dir}/{lora_names[0]}")
|
|
|
|
lora_config_path = lora_path / "adapter_config.json"
|
|
|
|
lora_adapter_path = lora_path / "adapter_model.bin"
|
|
|
|
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
2023-06-25 23:10:13 -04:00
|
|
|
if shared.model.__class__.__name__ == 'ExllamaModel':
|
|
|
|
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path))
|
|
|
|
shared.model.generator.lora = lora
|
|
|
|
else:
|
|
|
|
lora = ExLlamaLora(shared.model.ex_model, str(lora_config_path), str(lora_adapter_path))
|
|
|
|
shared.model.lora = lora
|
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
shared.lora_names = [lora_names[0]]
|
|
|
|
return
|
2023-06-05 22:29:29 -04:00
|
|
|
|
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
# Adapted from https://github.com/Ph0rk0z/text-generation-webui-testing
|
|
|
|
def add_lora_autogptq(lora_names):
|
2023-06-05 22:29:29 -04:00
|
|
|
|
2023-06-19 11:31:24 -04:00
|
|
|
try:
|
|
|
|
from auto_gptq import get_gptq_peft_model
|
|
|
|
from auto_gptq.utils.peft_utils import GPTQLoraConfig
|
|
|
|
except:
|
|
|
|
logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.")
|
|
|
|
return
|
2023-06-05 22:29:29 -04:00
|
|
|
|
2023-07-09 00:03:43 -04:00
|
|
|
if len(lora_names) == 0:
|
|
|
|
reload_model()
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
shared.lora_names = []
|
|
|
|
return
|
2023-06-05 22:29:29 -04:00
|
|
|
else:
|
2023-06-19 11:31:24 -04:00
|
|
|
if len(lora_names) > 1:
|
|
|
|
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
|
2023-07-09 00:03:43 -04:00
|
|
|
if not shared.args.no_inject_fused_attention:
|
|
|
|
logger.warning('Fused Atttention + AutoGPTQ may break Lora loading. Disable it.')
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
peft_config = GPTQLoraConfig(
|
|
|
|
inference_mode=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
lora_path = Path(f"{shared.args.lora_dir}/{lora_names[0]}")
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
|
|
|
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path)
|
|
|
|
shared.lora_names = [lora_names[0]]
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def add_lora_transformers(lora_names):
|
|
|
|
prior_set = set(shared.lora_names)
|
|
|
|
added_set = set(lora_names) - prior_set
|
|
|
|
removed_set = prior_set - set(lora_names)
|
|
|
|
|
|
|
|
# If no LoRA needs to be added or removed, exit
|
|
|
|
if len(added_set) == 0 and len(removed_set) == 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
# Add a LoRA when another LoRA is already present
|
|
|
|
if len(removed_set) == 0 and len(prior_set) > 0:
|
|
|
|
logger.info(f"Adding the LoRA(s) named {added_set} to the model...")
|
|
|
|
for lora in added_set:
|
|
|
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
# If any LoRA needs to be removed, start over
|
|
|
|
if len(removed_set) > 0:
|
2023-07-03 16:40:22 -04:00
|
|
|
# shared.model may no longer be PeftModel
|
|
|
|
if hasattr(shared.model, 'disable_adapter'):
|
|
|
|
shared.model.disable_adapter()
|
|
|
|
shared.model = shared.model.base_model.model
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
if len(lora_names) > 0:
|
|
|
|
params = {}
|
|
|
|
if not shared.args.cpu:
|
2023-07-07 01:24:07 -04:00
|
|
|
if shared.args.load_in_4bit or shared.args.load_in_8bit:
|
|
|
|
params['peft_type'] = shared.model.dtype
|
|
|
|
else:
|
|
|
|
params['dtype'] = shared.model.dtype
|
|
|
|
if hasattr(shared.model, "hf_device_map"):
|
|
|
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
|
2023-06-19 11:31:24 -04:00
|
|
|
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), adapter_name=lora_names[0], **params)
|
|
|
|
for lora in lora_names[1:]:
|
|
|
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
|
|
|
|
|
|
|
shared.lora_names = lora_names
|
|
|
|
|
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu:
|
|
|
|
shared.model.half()
|
|
|
|
if not hasattr(shared.model, "hf_device_map"):
|
|
|
|
if torch.has_mps:
|
|
|
|
device = torch.device('mps')
|
|
|
|
shared.model = shared.model.to(device)
|
|
|
|
else:
|
|
|
|
shared.model = shared.model.cuda()
|