gpt4all/gpt4all-chat/chatllm.cpp

1396 lines
49 KiB
C++
Raw Normal View History

#include "chatllm.h"
#include "bravesearch.h"
#include "chat.h"
#include "chatapi.h"
#include "localdocs.h"
2023-06-27 11:54:34 -04:00
#include "mysettings.h"
#include "network.h"
#include <QDataStream>
#include <QDebug>
#include <QFile>
#include <QGlobalStatic>
#include <QGuiApplication>
#include <QIODevice>
#include <QJsonDocument>
#include <QJsonObject>
#include <QMutex>
#include <QMutexLocker>
#include <QSet>
#include <QStringList>
#include <QWaitCondition>
#include <Qt>
#include <QtLogging>
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstddef>
#include <functional>
#include <limits>
#include <optional>
#include <string_view>
#include <utility>
#include <vector>
using namespace Qt::Literals::StringLiterals;
//#define DEBUG
//#define DEBUG_MODEL_LOADING
#define GPTJ_INTERNAL_STATE_VERSION 0 // GPT-J is gone but old chats still use this
#define LLAMA_INTERNAL_STATE_VERSION 0
class LLModelStore {
public:
static LLModelStore *globalInstance();
LLModelInfo acquireModel(); // will block until llmodel is ready
void releaseModel(LLModelInfo &&info); // must be called when you are done
void destroy();
private:
LLModelStore()
{
// seed with empty model
m_availableModel = LLModelInfo();
}
~LLModelStore() {}
std::optional<LLModelInfo> m_availableModel;
QMutex m_mutex;
QWaitCondition m_condition;
friend class MyLLModelStore;
};
class MyLLModelStore : public LLModelStore { };
Q_GLOBAL_STATIC(MyLLModelStore, storeInstance)
LLModelStore *LLModelStore::globalInstance()
{
return storeInstance();
}
LLModelInfo LLModelStore::acquireModel()
{
QMutexLocker locker(&m_mutex);
while (!m_availableModel)
m_condition.wait(locker.mutex());
auto first = std::move(*m_availableModel);
m_availableModel.reset();
return first;
}
void LLModelStore::releaseModel(LLModelInfo &&info)
{
QMutexLocker locker(&m_mutex);
Q_ASSERT(!m_availableModel);
m_availableModel = std::move(info);
m_condition.wakeAll();
}
void LLModelStore::destroy()
{
QMutexLocker locker(&m_mutex);
m_availableModel.reset();
}
void LLModelInfo::resetModel(ChatLLM *cllm, LLModel *model) {
this->model.reset(model);
fallbackReason.reset();
emit cllm->loadedModelInfoChanged();
}
ChatLLM::ChatLLM(Chat *parent, bool isServer)
: QObject{nullptr}
, m_promptResponseTokens(0)
2023-05-11 16:46:25 -04:00
, m_promptTokens(0)
, m_restoringFromText(false)
, m_shouldBeLoaded(false)
, m_forceUnloadModel(false)
, m_markedForDeletion(false)
2023-06-19 18:26:04 -04:00
, m_stopGenerating(false)
, m_timer(nullptr)
, m_isServer(isServer)
2023-06-27 11:54:34 -04:00
, m_forceMetal(MySettings::globalInstance()->forceMetal())
, m_reloadingToChangeVariant(false)
, m_processedSystemPrompt(false)
2023-10-10 16:43:02 -04:00
, m_restoreStateFromText(false)
, m_maybeToolCall(false)
{
moveToThread(&m_llmThread);
2023-06-01 14:13:12 -04:00
connect(this, &ChatLLM::shouldBeLoadedChanged, this, &ChatLLM::handleShouldBeLoadedChanged,
Qt::QueuedConnection); // explicitly queued
connect(this, &ChatLLM::trySwitchContextRequested, this, &ChatLLM::trySwitchContextOfLoadedModel,
Qt::QueuedConnection); // explicitly queued
connect(parent, &Chat::idChanged, this, &ChatLLM::handleChatIdChanged);
connect(&m_llmThread, &QThread::started, this, &ChatLLM::handleThreadStarted);
2023-06-27 11:54:34 -04:00
connect(MySettings::globalInstance(), &MySettings::forceMetalChanged, this, &ChatLLM::handleForceMetalChanged);
2023-09-13 10:32:08 -04:00
connect(MySettings::globalInstance(), &MySettings::deviceChanged, this, &ChatLLM::handleDeviceChanged);
2023-06-01 14:13:12 -04:00
// The following are blocking operations and will block the llm thread
connect(this, &ChatLLM::requestRetrieveFromDB, LocalDocs::globalInstance()->database(), &Database::retrieveFromDB,
Qt::BlockingQueuedConnection);
m_llmThread.setObjectName(parent->id());
m_llmThread.start();
}
2023-05-12 14:06:03 -04:00
ChatLLM::~ChatLLM()
{
destroy();
}
void ChatLLM::destroy()
{
2023-07-09 14:42:11 -04:00
m_stopGenerating = true;
2023-05-12 14:06:03 -04:00
m_llmThread.quit();
m_llmThread.wait();
// The only time we should have a model loaded here is on shutdown
// as we explicitly unload the model in all other circumstances
if (isModelLoaded()) {
m_llModelInfo.resetModel(this);
}
2023-05-12 14:06:03 -04:00
}
void ChatLLM::destroyStore()
{
LLModelStore::globalInstance()->destroy();
}
void ChatLLM::handleThreadStarted()
{
m_timer = new TokenTimer(this);
connect(m_timer, &TokenTimer::report, this, &ChatLLM::reportSpeed);
emit threadStarted();
}
2023-06-27 11:54:34 -04:00
void ChatLLM::handleForceMetalChanged(bool forceMetal)
{
#if defined(Q_OS_MAC) && defined(__aarch64__)
2023-06-27 11:54:34 -04:00
m_forceMetal = forceMetal;
if (isModelLoaded() && m_shouldBeLoaded) {
m_reloadingToChangeVariant = true;
unloadModel();
reloadModel();
m_reloadingToChangeVariant = false;
}
#endif
}
2023-09-13 10:32:08 -04:00
void ChatLLM::handleDeviceChanged()
{
if (isModelLoaded() && m_shouldBeLoaded) {
m_reloadingToChangeVariant = true;
unloadModel();
reloadModel();
m_reloadingToChangeVariant = false;
}
}
bool ChatLLM::loadDefaultModel()
{
2023-06-22 15:44:49 -04:00
ModelInfo defaultModel = ModelList::globalInstance()->defaultModelInfo();
if (defaultModel.filename().isEmpty()) {
emit modelLoadingError(u"Could not find any model to load"_qs);
return false;
}
2023-06-22 15:44:49 -04:00
return loadModel(defaultModel);
}
void ChatLLM::trySwitchContextOfLoadedModel(const ModelInfo &modelInfo)
{
// We're trying to see if the store already has the model fully loaded that we wish to use
// and if so we just acquire it from the store and switch the context and return true. If the
// store doesn't have it or we're already loaded or in any other case just return false.
// If we're already loaded or a server or we're reloading to change the variant/device or the
// modelInfo is empty, then this should fail
if (
isModelLoaded() || m_isServer || m_reloadingToChangeVariant || modelInfo.name().isEmpty() || !m_shouldBeLoaded
) {
emit trySwitchContextOfLoadedModelCompleted(0);
return;
}
QString filePath = modelInfo.dirpath + modelInfo.filename();
QFileInfo fileInfo(filePath);
acquireModel();
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "acquired model from store" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
// The store gave us no already loaded model, the wrong type of model, then give it back to the
// store and fail
if (!m_llModelInfo.model || m_llModelInfo.fileInfo != fileInfo || !m_shouldBeLoaded) {
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
emit trySwitchContextOfLoadedModelCompleted(0);
return;
}
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "store had our model" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
emit trySwitchContextOfLoadedModelCompleted(2);
// Restore, signal and process
restoreState();
emit modelLoadingPercentageChanged(1.0f);
emit trySwitchContextOfLoadedModelCompleted(0);
processSystemPrompt();
}
2023-06-22 15:44:49 -04:00
bool ChatLLM::loadModel(const ModelInfo &modelInfo)
{
// This is a complicated method because N different possible threads are interested in the outcome
// of this method. Why? Because we have a main/gui thread trying to monitor the state of N different
// possible chat threads all vying for a single resource - the currently loaded model - as the user
// switches back and forth between chats. It is important for our main/gui thread to never block
// but simultaneously always have up2date information with regards to which chat has the model loaded
// and what the type and name of that model is. I've tried to comment extensively in this method
// to provide an overview of what we're doing here.
// We're already loaded with this model
2023-06-22 15:44:49 -04:00
if (isModelLoaded() && this->modelInfo() == modelInfo)
return true;
// reset status
emit modelLoadingPercentageChanged(std::numeric_limits<float>::min()); // small non-zero positive value
emit modelLoadingError("");
m_pristineLoadedState = false;
QString filePath = modelInfo.dirpath + modelInfo.filename();
QFileInfo fileInfo(filePath);
// We have a live model, but it isn't the one we want
bool alreadyAcquired = isModelLoaded();
if (alreadyAcquired) {
resetContext();
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "already acquired model deleted" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
m_llModelInfo.resetModel(this);
} else if (!m_isServer) {
// This is a blocking call that tries to retrieve the model we need from the model store.
// If it succeeds, then we just have to restore state. If the store has never had a model
// returned to it, then the modelInfo.model pointer should be null which will happen on startup
acquireModel();
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "acquired model from store" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
// At this point it is possible that while we were blocked waiting to acquire the model from the
// store, that our state was changed to not be loaded. If this is the case, release the model
// back into the store and quit loading
if (!m_shouldBeLoaded) {
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "no longer need model" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
emit modelLoadingPercentageChanged(0.0f);
return false;
}
// Check if the store just gave us exactly the model we were looking for
2023-06-27 11:54:34 -04:00
if (m_llModelInfo.model && m_llModelInfo.fileInfo == fileInfo && !m_reloadingToChangeVariant) {
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "store had our model" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
restoreState();
emit modelLoadingPercentageChanged(1.0f);
setModelInfo(modelInfo);
Q_ASSERT(!m_modelInfo.filename().isEmpty());
if (m_modelInfo.filename().isEmpty())
emit modelLoadingError(u"Modelinfo is left null for %1"_s.arg(modelInfo.filename()));
else
processSystemPrompt();
return true;
} else {
// Release the memory since we have to switch to a different model.
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "deleting model" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
m_llModelInfo.resetModel(this);
}
}
// Guarantee we've released the previous models memory
2023-06-22 15:44:49 -04:00
Q_ASSERT(!m_llModelInfo.model);
// Store the file info in the modelInfo in case we have an error loading
2023-06-22 15:44:49 -04:00
m_llModelInfo.fileInfo = fileInfo;
if (fileInfo.exists()) {
QVariantMap modelLoadProps;
if (modelInfo.isOnline) {
QString apiKey;
QString requestUrl;
QString modelName;
{
QFile file(filePath);
bool success = file.open(QIODeviceBase::ReadOnly);
(void)success;
Q_ASSERT(success);
QJsonDocument doc = QJsonDocument::fromJson(file.readAll());
QJsonObject obj = doc.object();
apiKey = obj["apiKey"].toString();
modelName = obj["modelName"].toString();
if (modelInfo.isCompatibleApi) {
QString baseUrl(obj["baseUrl"].toString());
QUrl apiUrl(QUrl::fromUserInput(baseUrl));
if (!Network::isHttpUrlValid(apiUrl)) {
return false;
}
QString currentPath(apiUrl.path());
QString suffixPath("%1/chat/completions");
apiUrl.setPath(suffixPath.arg(currentPath));
requestUrl = apiUrl.toString();
} else {
requestUrl = modelInfo.url();
}
}
m_llModelType = LLModelType::API_;
ChatAPI *model = new ChatAPI();
model->setModelName(modelName);
model->setRequestURL(requestUrl);
model->setAPIKey(apiKey);
m_llModelInfo.resetModel(this, model);
} else if (!loadNewModel(modelInfo, modelLoadProps)) {
return false; // m_shouldBeLoaded became false
}
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "new model" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
restoreState();
#if defined(DEBUG)
qDebug() << "modelLoadedChanged" << m_llmThread.objectName();
fflush(stdout);
#endif
emit modelLoadingPercentageChanged(isModelLoaded() ? 1.0f : 0.0f);
emit loadedModelInfoChanged();
modelLoadProps.insert("requestedDevice", MySettings::globalInstance()->device());
modelLoadProps.insert("model", modelInfo.filename());
Network::globalInstance()->trackChatEvent("model_load", modelLoadProps);
} else {
if (!m_isServer)
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo)); // release back into the store
resetModel();
emit modelLoadingError(u"Could not find file for model %1"_s.arg(modelInfo.filename()));
}
if (m_llModelInfo.model) {
2023-06-22 15:44:49 -04:00
setModelInfo(modelInfo);
processSystemPrompt();
}
return bool(m_llModelInfo.model);
}
/* Returns false if the model should no longer be loaded (!m_shouldBeLoaded).
* Otherwise returns true, even on error. */
bool ChatLLM::loadNewModel(const ModelInfo &modelInfo, QVariantMap &modelLoadProps)
{
QElapsedTimer modelLoadTimer;
modelLoadTimer.start();
QString requestedDevice = MySettings::globalInstance()->device();
int n_ctx = MySettings::globalInstance()->modelContextLength(modelInfo);
m_ctx.n_ctx = n_ctx;
int ngl = MySettings::globalInstance()->modelGpuLayers(modelInfo);
std::string backend = "auto";
#ifdef Q_OS_MAC
if (requestedDevice == "CPU") {
backend = "cpu";
} else if (m_forceMetal) {
#ifdef __aarch64__
backend = "metal";
#endif
}
#else // !defined(Q_OS_MAC)
if (requestedDevice.startsWith("CUDA: "))
backend = "cuda";
#endif
QString filePath = modelInfo.dirpath + modelInfo.filename();
auto construct = [this, &filePath, &modelInfo, &modelLoadProps, n_ctx](std::string const &backend) {
QString constructError;
m_llModelInfo.resetModel(this);
try {
auto *model = LLModel::Implementation::construct(filePath.toStdString(), backend, n_ctx);
m_llModelInfo.resetModel(this, model);
} catch (const LLModel::MissingImplementationError &e) {
modelLoadProps.insert("error", "missing_model_impl");
constructError = e.what();
} catch (const LLModel::UnsupportedModelError &e) {
modelLoadProps.insert("error", "unsupported_model_file");
constructError = e.what();
} catch (const LLModel::BadArchError &e) {
constructError = e.what();
modelLoadProps.insert("error", "unsupported_model_arch");
modelLoadProps.insert("model_arch", QString::fromStdString(e.arch()));
}
if (!m_llModelInfo.model) {
if (!m_isServer)
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
resetModel();
emit modelLoadingError(u"Error loading %1: %2"_s.arg(modelInfo.filename(), constructError));
return false;
}
m_llModelInfo.model->setProgressCallback([this](float progress) -> bool {
progress = std::max(progress, std::numeric_limits<float>::min()); // keep progress above zero
emit modelLoadingPercentageChanged(progress);
return m_shouldBeLoaded;
});
return true;
};
if (!construct(backend))
return true;
if (m_llModelInfo.model->isModelBlacklisted(filePath.toStdString())) {
static QSet<QString> warned;
auto fname = modelInfo.filename();
if (!warned.contains(fname)) {
emit modelLoadingWarning(
u"%1 is known to be broken. Please get a replacement via the download dialog."_s.arg(fname)
);
warned.insert(fname); // don't warn again until restart
}
}
auto approxDeviceMemGB = [](const LLModel::GPUDevice *dev) {
float memGB = dev->heapSize / float(1024 * 1024 * 1024);
return std::floor(memGB * 10.f) / 10.f; // truncate to 1 decimal place
};
std::vector<LLModel::GPUDevice> availableDevices;
const LLModel::GPUDevice *defaultDevice = nullptr;
{
const size_t requiredMemory = m_llModelInfo.model->requiredMem(filePath.toStdString(), n_ctx, ngl);
availableDevices = m_llModelInfo.model->availableGPUDevices(requiredMemory);
// Pick the best device
// NB: relies on the fact that Kompute devices are listed first
if (!availableDevices.empty() && availableDevices.front().type == 2 /*a discrete gpu*/) {
defaultDevice = &availableDevices.front();
float memGB = defaultDevice->heapSize / float(1024 * 1024 * 1024);
memGB = std::floor(memGB * 10.f) / 10.f; // truncate to 1 decimal place
modelLoadProps.insert("default_device", QString::fromStdString(defaultDevice->name));
modelLoadProps.insert("default_device_mem", approxDeviceMemGB(defaultDevice));
modelLoadProps.insert("default_device_backend", QString::fromStdString(defaultDevice->backendName()));
}
}
bool actualDeviceIsCPU = true;
#if defined(Q_OS_MAC) && defined(__aarch64__)
if (m_llModelInfo.model->implementation().buildVariant() == "metal")
actualDeviceIsCPU = false;
#else
if (requestedDevice != "CPU") {
const auto *device = defaultDevice;
if (requestedDevice != "Auto") {
// Use the selected device
for (const LLModel::GPUDevice &d : availableDevices) {
if (QString::fromStdString(d.selectionName()) == requestedDevice) {
device = &d;
break;
}
}
}
std::string unavail_reason;
if (!device) {
// GPU not available
} else if (!m_llModelInfo.model->initializeGPUDevice(device->index, &unavail_reason)) {
m_llModelInfo.fallbackReason = QString::fromStdString(unavail_reason);
} else {
actualDeviceIsCPU = false;
modelLoadProps.insert("requested_device_mem", approxDeviceMemGB(device));
}
}
#endif
bool success = m_llModelInfo.model->loadModel(filePath.toStdString(), n_ctx, ngl);
if (!m_shouldBeLoaded) {
m_llModelInfo.resetModel(this);
if (!m_isServer)
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
resetModel();
emit modelLoadingPercentageChanged(0.0f);
return false;
}
if (actualDeviceIsCPU) {
// we asked llama.cpp to use the CPU
} else if (!success) {
// llama_init_from_file returned nullptr
m_llModelInfo.fallbackReason = "GPU loading failed (out of VRAM?)";
modelLoadProps.insert("cpu_fallback_reason", "gpu_load_failed");
// For CUDA, make sure we don't use the GPU at all - ngl=0 still offloads matmuls
if (backend == "cuda" && !construct("auto"))
return true;
success = m_llModelInfo.model->loadModel(filePath.toStdString(), n_ctx, 0);
if (!m_shouldBeLoaded) {
m_llModelInfo.resetModel(this);
if (!m_isServer)
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
resetModel();
emit modelLoadingPercentageChanged(0.0f);
return false;
}
} else if (!m_llModelInfo.model->usingGPUDevice()) {
// ggml_vk_init was not called in llama.cpp
// We might have had to fallback to CPU after load if the model is not possible to accelerate
// for instance if the quantization method is not supported on Vulkan yet
m_llModelInfo.fallbackReason = "model or quant has no GPU support";
modelLoadProps.insert("cpu_fallback_reason", "gpu_unsupported_model");
}
if (!success) {
m_llModelInfo.resetModel(this);
if (!m_isServer)
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
resetModel();
emit modelLoadingError(u"Could not load model due to invalid model file for %1"_s.arg(modelInfo.filename()));
modelLoadProps.insert("error", "loadmodel_failed");
return true;
}
switch (m_llModelInfo.model->implementation().modelType()[0]) {
case 'L': m_llModelType = LLModelType::LLAMA_; break;
default:
{
m_llModelInfo.resetModel(this);
if (!m_isServer)
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
resetModel();
emit modelLoadingError(u"Could not determine model type for %1"_s.arg(modelInfo.filename()));
}
}
modelLoadProps.insert("$duration", modelLoadTimer.elapsed() / 1000.);
return true;
};
bool ChatLLM::isModelLoaded() const
{
2023-06-22 15:44:49 -04:00
return m_llModelInfo.model && m_llModelInfo.model->isModelLoaded();
}
std::string remove_leading_whitespace(const std::string& input)
{
auto first_non_whitespace = std::find_if(input.begin(), input.end(), [](unsigned char c) {
return !std::isspace(c);
});
if (first_non_whitespace == input.end())
return std::string();
return std::string(first_non_whitespace, input.end());
}
std::string trim_whitespace(const std::string& input)
{
auto first_non_whitespace = std::find_if(input.begin(), input.end(), [](unsigned char c) {
return !std::isspace(c);
});
if (first_non_whitespace == input.end())
return std::string();
auto last_non_whitespace = std::find_if(input.rbegin(), input.rend(), [](unsigned char c) {
return !std::isspace(c);
}).base();
return std::string(first_non_whitespace, last_non_whitespace);
}
// FIXME(jared): we don't actually have to re-decode the prompt to generate a new response
void ChatLLM::regenerateResponse()
{
// ChatGPT uses a different semantic meaning for n_past than local models. For ChatGPT, the meaning
// of n_past is of the number of prompt/response pairs, rather than for total tokens.
if (m_llModelType == LLModelType::API_)
m_ctx.n_past -= 1;
else
m_ctx.n_past -= m_promptResponseTokens;
m_ctx.n_past = std::max(0, m_ctx.n_past);
m_ctx.tokens.erase(m_ctx.tokens.end() - m_promptResponseTokens, m_ctx.tokens.end());
m_promptResponseTokens = 0;
2023-05-11 16:46:25 -04:00
m_promptTokens = 0;
m_response = std::string();
emit responseChanged(QString::fromStdString(m_response));
}
void ChatLLM::resetResponse()
{
2023-05-11 16:46:25 -04:00
m_promptTokens = 0;
m_promptResponseTokens = 0;
m_response = std::string();
emit responseChanged(QString::fromStdString(m_response));
}
void ChatLLM::resetContext()
{
resetResponse();
m_processedSystemPrompt = false;
m_ctx = LLModel::PromptContext();
}
QString ChatLLM::response() const
{
return QString::fromStdString(remove_leading_whitespace(m_response));
}
2023-06-22 15:44:49 -04:00
ModelInfo ChatLLM::modelInfo() const
{
2023-06-22 15:44:49 -04:00
return m_modelInfo;
}
2023-06-22 15:44:49 -04:00
void ChatLLM::setModelInfo(const ModelInfo &modelInfo)
{
2023-06-22 15:44:49 -04:00
m_modelInfo = modelInfo;
emit modelInfoChanged(modelInfo);
}
void ChatLLM::acquireModel() {
m_llModelInfo = LLModelStore::globalInstance()->acquireModel();
emit loadedModelInfoChanged();
}
void ChatLLM::resetModel() {
m_llModelInfo = {};
emit loadedModelInfoChanged();
}
2023-06-22 15:44:49 -04:00
void ChatLLM::modelChangeRequested(const ModelInfo &modelInfo)
{
m_shouldBeLoaded = true;
2023-06-22 15:44:49 -04:00
loadModel(modelInfo);
}
bool ChatLLM::handlePrompt(int32_t token)
{
2023-06-19 18:23:05 -04:00
// m_promptResponseTokens is related to last prompt/response not
// the entire context window which we can reset on regenerate prompt
#if defined(DEBUG)
qDebug() << "prompt process" << m_llmThread.objectName() << token;
#endif
2023-05-11 16:46:25 -04:00
++m_promptTokens;
++m_promptResponseTokens;
m_timer->start();
return !m_stopGenerating;
}
bool ChatLLM::handleResponse(int32_t token, const std::string &response)
{
#if defined(DEBUG)
printf("%s", response.c_str());
fflush(stdout);
#endif
// check for error
if (token < 0) {
m_response.append(response);
emit responseChanged(QString::fromStdString(remove_leading_whitespace(m_response)));
return false;
}
// Only valid for llama 3.1 instruct
if (m_modelInfo.filename().startsWith("Meta-Llama-3.1-8B-Instruct")) {
// Based on https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#built-in-python-based-tool-calling
// For brave_search and wolfram_alpha ipython is always used
// <|python_tag|>
// brave_search.call(query="...")
// <|eom_id|>
const int eom_id = 128008;
const int python_tag = 128010;
// If we have a built-in tool call, then it should be the first token
const bool isFirstResponseToken = m_promptResponseTokens == m_promptTokens;
Q_ASSERT(token != python_tag || isFirstResponseToken);
if (isFirstResponseToken && token == python_tag) {
m_maybeToolCall = true;
++m_promptResponseTokens;
return !m_stopGenerating;
}
// Check for end of built-in tool call
Q_ASSERT(token != eom_id || !m_maybeToolCall);
if (token == eom_id) {
++m_promptResponseTokens;
return false;
}
}
2023-06-19 18:23:05 -04:00
// m_promptResponseTokens is related to last prompt/response not
// the entire context window which we can reset on regenerate prompt
++m_promptResponseTokens;
m_timer->inc();
Q_ASSERT(!response.empty());
m_response.append(response);
if (!m_maybeToolCall)
emit responseChanged(QString::fromStdString(remove_leading_whitespace(m_response)));
return !m_stopGenerating;
}
bool ChatLLM::prompt(const QList<QString> &collectionList, const QString &prompt)
{
if (m_restoreStateFromText) {
Q_ASSERT(m_state.isEmpty());
processRestoreStateFromText();
}
if (!m_processedSystemPrompt)
processSystemPrompt();
const QString promptTemplate = MySettings::globalInstance()->modelPromptTemplate(m_modelInfo);
const int32_t n_predict = MySettings::globalInstance()->modelMaxLength(m_modelInfo);
const int32_t top_k = MySettings::globalInstance()->modelTopK(m_modelInfo);
const float top_p = MySettings::globalInstance()->modelTopP(m_modelInfo);
const float min_p = MySettings::globalInstance()->modelMinP(m_modelInfo);
const float temp = MySettings::globalInstance()->modelTemperature(m_modelInfo);
const int32_t n_batch = MySettings::globalInstance()->modelPromptBatchSize(m_modelInfo);
const float repeat_penalty = MySettings::globalInstance()->modelRepeatPenalty(m_modelInfo);
const int32_t repeat_penalty_tokens = MySettings::globalInstance()->modelRepeatPenaltyTokens(m_modelInfo);
return promptInternal(collectionList, prompt, promptTemplate, n_predict, top_k, top_p, min_p, temp, n_batch,
repeat_penalty, repeat_penalty_tokens);
}
bool ChatLLM::promptInternal(const QList<QString> &collectionList, const QString &prompt, const QString &promptTemplate,
int32_t n_predict, int32_t top_k, float top_p, float min_p, float temp, int32_t n_batch, float repeat_penalty,
int32_t repeat_penalty_tokens, bool isToolCallResponse)
{
if (!isModelLoaded())
return false;
QList<SourceExcerpt> databaseResults;
const int retrievalSize = MySettings::globalInstance()->localDocsRetrievalSize();
if (!collectionList.isEmpty() && !isToolCallResponse) {
emit requestRetrieveFromDB(collectionList, prompt, retrievalSize, &databaseResults); // blocks
emit sourceExcerptsChanged(databaseResults);
}
2023-06-01 14:13:12 -04:00
// Augment the prompt template with the results if any
QString docsContext;
if (!databaseResults.isEmpty()) {
QStringList results;
for (const SourceExcerpt &info : databaseResults)
results << u"Collection: %1\nPath: %2\nExcerpt: %3"_s.arg(info.collection, info.path, info.text);
// FIXME(jared): use a Jinja prompt template instead of hardcoded Alpaca-style localdocs template
docsContext = u"### Context:\n%1\n\n"_s.arg(results.join("\n\n"));
}
int n_threads = MySettings::globalInstance()->threadCount();
m_stopGenerating = false;
auto promptFunc = std::bind(&ChatLLM::handlePrompt, this, std::placeholders::_1);
auto responseFunc = std::bind(&ChatLLM::handleResponse, this, std::placeholders::_1,
std::placeholders::_2);
emit promptProcessing();
m_ctx.n_predict = n_predict;
m_ctx.top_k = top_k;
m_ctx.top_p = top_p;
m_ctx.min_p = min_p;
m_ctx.temp = temp;
m_ctx.n_batch = n_batch;
m_ctx.repeat_penalty = repeat_penalty;
m_ctx.repeat_last_n = repeat_penalty_tokens;
2023-06-22 15:44:49 -04:00
m_llModelInfo.model->setThreadCount(n_threads);
#if defined(DEBUG)
printf("%s", qPrintable(prompt));
fflush(stdout);
#endif
QElapsedTimer totalTime;
totalTime.start();
m_timer->start();
if (!docsContext.isEmpty()) {
auto old_n_predict = std::exchange(m_ctx.n_predict, 0); // decode localdocs context without a response
m_llModelInfo.model->prompt(docsContext.toStdString(), "%1", promptFunc, responseFunc,
/*allowContextShift*/ true, m_ctx);
m_ctx.n_predict = old_n_predict; // now we are ready for a response
}
m_llModelInfo.model->prompt(prompt.toStdString(), promptTemplate.toStdString(), promptFunc, responseFunc,
/*allowContextShift*/ true, m_ctx);
#if defined(DEBUG)
printf("\n");
fflush(stdout);
#endif
m_timer->stop();
qint64 elapsed = totalTime.elapsed();
std::string trimmed = trim_whitespace(m_response);
if (m_maybeToolCall) {
m_maybeToolCall = false;
m_ctx.n_past = std::max(0, m_ctx.n_past);
m_ctx.tokens.erase(m_ctx.tokens.end() - m_promptResponseTokens, m_ctx.tokens.end());
m_promptResponseTokens = 0;
m_promptTokens = 0;
m_response = std::string();
return toolCallInternal(QString::fromStdString(trimmed), n_predict, top_k, top_p, min_p, temp,
n_batch, repeat_penalty, repeat_penalty_tokens);
} else {
if (trimmed != m_response) {
m_response = trimmed;
emit responseChanged(QString::fromStdString(m_response));
}
SuggestionMode mode = MySettings::globalInstance()->suggestionMode();
if (mode == SuggestionMode::On || (mode == SuggestionMode::SourceExcerptsOnly && (!databaseResults.isEmpty() || isToolCallResponse)))
generateQuestions(elapsed);
else
emit responseStopped(elapsed);
}
m_pristineLoadedState = false;
return true;
}
bool ChatLLM::toolCallInternal(const QString &toolCall, int32_t n_predict, int32_t top_k, float top_p,
float min_p, float temp, int32_t n_batch, float repeat_penalty, int32_t repeat_penalty_tokens)
{
Q_ASSERT(m_modelInfo.filename().startsWith("Meta-Llama-3.1-8B-Instruct"));
emit toolCalled(tr("searching web..."));
// Based on https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#built-in-python-based-tool-calling
// For brave_search and wolfram_alpha ipython is always used
static QRegularExpression re(R"(brave_search\.call\(query=\"([^\"]+)\"\))");
QRegularExpressionMatch match = re.match(toolCall);
QString promptTemplate("<|start_header_id|>ipython<|end_header_id|>\n\n%1<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n%2");
QString query;
if (match.hasMatch()) {
query = match.captured(1);
} else {
qWarning() << "WARNING: Could not find the tool for " << toolCall;
return promptInternal(QList<QString>()/*collectionList*/, QString() /*prompt*/, promptTemplate,
n_predict, top_k, top_p, min_p, temp, n_batch, repeat_penalty, repeat_penalty_tokens, true /*isToolCallResponse*/);
}
const QString apiKey = MySettings::globalInstance()->braveSearchAPIKey();
Q_ASSERT(apiKey != "");
BraveSearch brave;
const QPair<QString, QList<SourceExcerpt>> braveResponse = brave.search(apiKey, query, 2 /*topK*/, 2000 /*msecs to timeout*/);
emit sourceExcerptsChanged(braveResponse.second);
return promptInternal(QList<QString>()/*collectionList*/, braveResponse.first, promptTemplate,
n_predict, top_k, top_p, min_p, temp, n_batch, repeat_penalty, repeat_penalty_tokens, true /*isToolCallResponse*/);
}
void ChatLLM::setShouldBeLoaded(bool b)
{
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "setShouldBeLoaded" << m_llmThread.objectName() << b << m_llModelInfo.model.get();
#endif
m_shouldBeLoaded = b; // atomic
emit shouldBeLoadedChanged();
}
void ChatLLM::requestTrySwitchContext()
{
m_shouldBeLoaded = true; // atomic
emit trySwitchContextRequested(modelInfo());
}
void ChatLLM::handleShouldBeLoadedChanged()
{
if (m_shouldBeLoaded)
reloadModel();
else
unloadModel();
}
void ChatLLM::unloadModel()
{
if (!isModelLoaded() || m_isServer)
return;
if (!m_forceUnloadModel || !m_shouldBeLoaded)
emit modelLoadingPercentageChanged(0.0f);
else
emit modelLoadingPercentageChanged(std::numeric_limits<float>::min()); // small non-zero positive value
if (!m_markedForDeletion)
saveState();
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "unloadModel" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
if (m_forceUnloadModel) {
m_llModelInfo.resetModel(this);
m_forceUnloadModel = false;
}
LLModelStore::globalInstance()->releaseModel(std::move(m_llModelInfo));
m_pristineLoadedState = false;
}
void ChatLLM::reloadModel()
{
if (isModelLoaded() && m_forceUnloadModel)
unloadModel(); // we unload first if we are forcing an unload
if (isModelLoaded() || m_isServer)
return;
#if defined(DEBUG_MODEL_LOADING)
qDebug() << "reloadModel" << m_llmThread.objectName() << m_llModelInfo.model.get();
#endif
2023-06-22 15:44:49 -04:00
const ModelInfo m = modelInfo();
if (m.name().isEmpty())
loadDefaultModel();
else
loadModel(m);
}
2023-05-02 11:19:17 -04:00
void ChatLLM::generateName()
{
Q_ASSERT(isModelLoaded());
if (!isModelLoaded())
return;
const QString chatNamePrompt = MySettings::globalInstance()->modelChatNamePrompt(m_modelInfo);
if (chatNamePrompt.trimmed().isEmpty()) {
qWarning() << "ChatLLM: not generating chat name because prompt is empty";
return;
}
auto promptTemplate = MySettings::globalInstance()->modelPromptTemplate(m_modelInfo);
2023-05-02 11:19:17 -04:00
auto promptFunc = std::bind(&ChatLLM::handleNamePrompt, this, std::placeholders::_1);
auto responseFunc = std::bind(&ChatLLM::handleNameResponse, this, std::placeholders::_1, std::placeholders::_2);
2023-05-02 11:19:17 -04:00
LLModel::PromptContext ctx = m_ctx;
m_llModelInfo.model->prompt(chatNamePrompt.toStdString(), promptTemplate.toStdString(),
promptFunc, responseFunc, /*allowContextShift*/ false, ctx);
2023-05-02 11:19:17 -04:00
std::string trimmed = trim_whitespace(m_nameResponse);
if (trimmed != m_nameResponse) {
m_nameResponse = trimmed;
emit generatedNameChanged(QString::fromStdString(m_nameResponse));
2023-05-02 11:19:17 -04:00
}
m_pristineLoadedState = false;
2023-05-02 11:19:17 -04:00
}
void ChatLLM::handleChatIdChanged(const QString &id)
{
m_llmThread.setObjectName(id);
}
2023-05-02 11:19:17 -04:00
bool ChatLLM::handleNamePrompt(int32_t token)
{
#if defined(DEBUG)
qDebug() << "name prompt" << m_llmThread.objectName() << token;
#endif
2023-05-02 11:19:17 -04:00
Q_UNUSED(token);
2023-07-09 14:42:11 -04:00
return !m_stopGenerating;
2023-05-02 11:19:17 -04:00
}
bool ChatLLM::handleNameResponse(int32_t token, const std::string &response)
{
#if defined(DEBUG)
qDebug() << "name response" << m_llmThread.objectName() << token << response;
#endif
2023-05-02 11:19:17 -04:00
Q_UNUSED(token);
2023-05-08 12:02:31 -04:00
2023-05-02 11:19:17 -04:00
m_nameResponse.append(response);
emit generatedNameChanged(QString::fromStdString(m_nameResponse));
2023-05-08 12:02:31 -04:00
QString gen = QString::fromStdString(m_nameResponse).simplified();
QStringList words = gen.split(' ', Qt::SkipEmptyParts);
return words.size() <= 3;
2023-05-02 11:19:17 -04:00
}
bool ChatLLM::handleQuestionPrompt(int32_t token)
{
#if defined(DEBUG)
qDebug() << "question prompt" << m_llmThread.objectName() << token;
#endif
Q_UNUSED(token);
return !m_stopGenerating;
}
bool ChatLLM::handleQuestionResponse(int32_t token, const std::string &response)
{
#if defined(DEBUG)
qDebug() << "question response" << m_llmThread.objectName() << token << response;
#endif
Q_UNUSED(token);
// add token to buffer
m_questionResponse.append(response);
// match whole question sentences
// FIXME: This only works with response by the model in english which is not ideal for a multi-language
// model.
static const QRegularExpression reQuestion(R"(\b(What|Where|How|Why|When|Who|Which|Whose|Whom)\b[^?]*\?)");
// extract all questions from response
int lastMatchEnd = -1;
for (const auto &match : reQuestion.globalMatch(m_questionResponse)) {
lastMatchEnd = match.capturedEnd();
emit generatedQuestionFinished(match.captured());
}
// remove processed input from buffer
if (lastMatchEnd != -1)
m_questionResponse.erase(m_questionResponse.cbegin(), m_questionResponse.cbegin() + lastMatchEnd);
return true;
}
void ChatLLM::generateQuestions(qint64 elapsed)
{
Q_ASSERT(isModelLoaded());
if (!isModelLoaded()) {
emit responseStopped(elapsed);
return;
}
const std::string suggestedFollowUpPrompt = MySettings::globalInstance()->modelSuggestedFollowUpPrompt(m_modelInfo).toStdString();
if (QString::fromStdString(suggestedFollowUpPrompt).trimmed().isEmpty()) {
emit responseStopped(elapsed);
return;
}
emit generatingQuestions();
m_questionResponse.clear();
auto promptTemplate = MySettings::globalInstance()->modelPromptTemplate(m_modelInfo);
auto promptFunc = std::bind(&ChatLLM::handleQuestionPrompt, this, std::placeholders::_1);
auto responseFunc = std::bind(&ChatLLM::handleQuestionResponse, this, std::placeholders::_1, std::placeholders::_2);
LLModel::PromptContext ctx = m_ctx;
QElapsedTimer totalTime;
totalTime.start();
m_llModelInfo.model->prompt(suggestedFollowUpPrompt, promptTemplate.toStdString(), promptFunc, responseFunc,
/*allowContextShift*/ false, ctx);
elapsed += totalTime.elapsed();
emit responseStopped(elapsed);
}
bool ChatLLM::handleSystemPrompt(int32_t token)
{
#if defined(DEBUG)
qDebug() << "system prompt" << m_llmThread.objectName() << token << m_stopGenerating;
#endif
Q_UNUSED(token);
2023-07-09 14:42:11 -04:00
return !m_stopGenerating;
}
2023-10-10 16:43:02 -04:00
bool ChatLLM::handleRestoreStateFromTextPrompt(int32_t token)
{
#if defined(DEBUG)
qDebug() << "restore state from text prompt" << m_llmThread.objectName() << token << m_stopGenerating;
#endif
Q_UNUSED(token);
return !m_stopGenerating;
}
// this function serialized the cached model state to disk.
// we want to also serialize n_ctx, and read it at load time.
2023-10-10 16:43:02 -04:00
bool ChatLLM::serialize(QDataStream &stream, int version, bool serializeKV)
{
if (version > 1) {
2023-06-22 15:44:49 -04:00
stream << m_llModelType;
switch (m_llModelType) {
case GPTJ_: stream << GPTJ_INTERNAL_STATE_VERSION; break;
case LLAMA_: stream << LLAMA_INTERNAL_STATE_VERSION; break;
default: Q_UNREACHABLE();
}
}
stream << response();
stream << generatedName();
stream << m_promptResponseTokens;
2023-10-10 16:43:02 -04:00
if (!serializeKV) {
#if defined(DEBUG)
qDebug() << "serialize" << m_llmThread.objectName() << m_state.size();
#endif
return stream.status() == QDataStream::Ok;
}
2023-06-19 18:23:05 -04:00
if (version <= 3) {
int responseLogits = 0;
2023-06-19 18:23:05 -04:00
stream << responseLogits;
}
stream << m_ctx.n_past;
if (version >= 7) {
stream << m_ctx.n_ctx;
}
stream << quint64(m_ctx.tokens.size());
stream.writeRawData(reinterpret_cast<const char*>(m_ctx.tokens.data()), m_ctx.tokens.size() * sizeof(int));
saveState();
QByteArray compressed = qCompress(m_state);
stream << compressed;
#if defined(DEBUG)
qDebug() << "serialize" << m_llmThread.objectName() << m_state.size();
#endif
return stream.status() == QDataStream::Ok;
}
2023-10-10 16:43:02 -04:00
bool ChatLLM::deserialize(QDataStream &stream, int version, bool deserializeKV, bool discardKV)
{
if (version > 1) {
int internalStateVersion;
2023-06-22 15:44:49 -04:00
stream >> m_llModelType;
stream >> internalStateVersion; // for future use
}
QString response;
stream >> response;
m_response = response.toStdString();
QString nameResponse;
stream >> nameResponse;
m_nameResponse = nameResponse.toStdString();
stream >> m_promptResponseTokens;
2023-10-10 16:43:02 -04:00
// If we do not deserialize the KV or it is discarded, then we need to restore the state from the
// text only. This will be a costly operation, but the chat has to be restored from the text archive
// alone.
if (!deserializeKV || discardKV) {
m_restoreStateFromText = true;
m_pristineLoadedState = true;
}
2023-10-10 16:43:02 -04:00
if (!deserializeKV) {
#if defined(DEBUG)
qDebug() << "deserialize" << m_llmThread.objectName();
#endif
return stream.status() == QDataStream::Ok;
}
2023-06-19 18:23:05 -04:00
if (version <= 3) {
int responseLogits;
stream >> responseLogits;
}
2023-10-10 16:43:02 -04:00
int32_t n_past;
stream >> n_past;
if (!discardKV) m_ctx.n_past = n_past;
if (version >= 7) {
uint32_t n_ctx;
stream >> n_ctx;
if (!discardKV) m_ctx.n_ctx = n_ctx;
}
if (version < 9) {
quint64 logitsSize;
stream >> logitsSize;
2023-10-10 16:43:02 -04:00
stream.skipRawData(logitsSize * sizeof(float));
}
quint64 tokensSize;
stream >> tokensSize;
2023-10-10 16:43:02 -04:00
if (!discardKV) {
m_ctx.tokens.resize(tokensSize);
stream.readRawData(reinterpret_cast<char*>(m_ctx.tokens.data()), tokensSize * sizeof(int));
} else {
stream.skipRawData(tokensSize * sizeof(int));
}
2023-05-08 05:52:57 -04:00
if (version > 0) {
QByteArray compressed;
stream >> compressed;
2023-10-10 16:43:02 -04:00
if (!discardKV)
m_state = qUncompress(compressed);
2023-05-08 05:52:57 -04:00
} else {
if (!discardKV) {
2023-10-10 16:43:02 -04:00
stream >> m_state;
} else {
2023-10-10 16:43:02 -04:00
QByteArray state;
stream >> state;
2023-10-10 16:43:02 -04:00
}
2023-05-08 05:52:57 -04:00
}
2023-10-10 16:43:02 -04:00
#if defined(DEBUG)
qDebug() << "deserialize" << m_llmThread.objectName();
#endif
return stream.status() == QDataStream::Ok;
}
void ChatLLM::saveState()
{
if (!isModelLoaded() || m_pristineLoadedState)
return;
if (m_llModelType == LLModelType::API_) {
m_state.clear();
QDataStream stream(&m_state, QIODeviceBase::WriteOnly);
stream.setVersion(QDataStream::Qt_6_4);
ChatAPI *chatAPI = static_cast<ChatAPI*>(m_llModelInfo.model.get());
stream << chatAPI->context();
return;
}
2023-06-22 15:44:49 -04:00
const size_t stateSize = m_llModelInfo.model->stateSize();
m_state.resize(stateSize);
#if defined(DEBUG)
qDebug() << "saveState" << m_llmThread.objectName() << "size:" << m_state.size();
#endif
2023-06-22 15:44:49 -04:00
m_llModelInfo.model->saveState(static_cast<uint8_t*>(reinterpret_cast<void*>(m_state.data())));
}
void ChatLLM::restoreState()
{
2023-10-10 16:43:02 -04:00
if (!isModelLoaded())
return;
if (m_llModelType == LLModelType::API_) {
QDataStream stream(&m_state, QIODeviceBase::ReadOnly);
stream.setVersion(QDataStream::Qt_6_4);
ChatAPI *chatAPI = static_cast<ChatAPI*>(m_llModelInfo.model.get());
QList<QString> context;
stream >> context;
chatAPI->setContext(context);
m_state.clear();
m_state.squeeze();
return;
}
#if defined(DEBUG)
qDebug() << "restoreState" << m_llmThread.objectName() << "size:" << m_state.size();
#endif
2023-10-10 16:43:02 -04:00
if (m_state.isEmpty())
return;
if (m_llModelInfo.model->stateSize() == m_state.size()) {
m_llModelInfo.model->restoreState(static_cast<const uint8_t*>(reinterpret_cast<void*>(m_state.data())));
m_processedSystemPrompt = true;
m_pristineLoadedState = true;
} else {
qWarning() << "restoring state from text because" << m_llModelInfo.model->stateSize() << "!=" << m_state.size();
m_restoreStateFromText = true;
}
// free local state copy unless unload is pending
if (m_shouldBeLoaded) {
m_state.clear();
m_state.squeeze();
m_pristineLoadedState = false;
}
}
void ChatLLM::processSystemPrompt()
{
Q_ASSERT(isModelLoaded());
2023-11-21 10:42:12 -05:00
if (!isModelLoaded() || m_processedSystemPrompt || m_restoreStateFromText || m_isServer)
return;
const std::string systemPrompt = MySettings::globalInstance()->modelSystemPrompt(m_modelInfo).toStdString();
2023-07-12 14:30:11 -04:00
if (QString::fromStdString(systemPrompt).trimmed().isEmpty()) {
m_processedSystemPrompt = true;
return;
}
2023-10-10 16:43:02 -04:00
// Start with a whole new context
2023-07-09 14:42:11 -04:00
m_stopGenerating = false;
2023-10-10 16:43:02 -04:00
m_ctx = LLModel::PromptContext();
auto promptFunc = std::bind(&ChatLLM::handleSystemPrompt, this, std::placeholders::_1);
const int32_t n_predict = MySettings::globalInstance()->modelMaxLength(m_modelInfo);
const int32_t top_k = MySettings::globalInstance()->modelTopK(m_modelInfo);
const float top_p = MySettings::globalInstance()->modelTopP(m_modelInfo);
const float min_p = MySettings::globalInstance()->modelMinP(m_modelInfo);
const float temp = MySettings::globalInstance()->modelTemperature(m_modelInfo);
const int32_t n_batch = MySettings::globalInstance()->modelPromptBatchSize(m_modelInfo);
const float repeat_penalty = MySettings::globalInstance()->modelRepeatPenalty(m_modelInfo);
const int32_t repeat_penalty_tokens = MySettings::globalInstance()->modelRepeatPenaltyTokens(m_modelInfo);
int n_threads = MySettings::globalInstance()->threadCount();
m_ctx.n_predict = n_predict;
m_ctx.top_k = top_k;
m_ctx.top_p = top_p;
m_ctx.min_p = min_p;
m_ctx.temp = temp;
m_ctx.n_batch = n_batch;
m_ctx.repeat_penalty = repeat_penalty;
m_ctx.repeat_last_n = repeat_penalty_tokens;
m_llModelInfo.model->setThreadCount(n_threads);
#if defined(DEBUG)
printf("%s", qPrintable(QString::fromStdString(systemPrompt)));
fflush(stdout);
#endif
auto old_n_predict = std::exchange(m_ctx.n_predict, 0); // decode system prompt without a response
// use "%1%2" and not "%1" to avoid implicit whitespace
m_llModelInfo.model->prompt(systemPrompt, "%1%2", promptFunc, nullptr, /*allowContextShift*/ true, m_ctx, true);
m_ctx.n_predict = old_n_predict;
#if defined(DEBUG)
printf("\n");
fflush(stdout);
#endif
2023-10-10 16:43:02 -04:00
2023-11-21 10:42:12 -05:00
m_processedSystemPrompt = m_stopGenerating == false;
m_pristineLoadedState = false;
2023-10-10 16:43:02 -04:00
}
void ChatLLM::processRestoreStateFromText()
{
Q_ASSERT(isModelLoaded());
if (!isModelLoaded() || !m_restoreStateFromText || m_isServer)
return;
m_restoringFromText = true;
emit restoringFromTextChanged();
2023-10-10 16:43:02 -04:00
m_stopGenerating = false;
m_ctx = LLModel::PromptContext();
auto promptFunc = std::bind(&ChatLLM::handleRestoreStateFromTextPrompt, this, std::placeholders::_1);
const QString promptTemplate = MySettings::globalInstance()->modelPromptTemplate(m_modelInfo);
const int32_t n_predict = MySettings::globalInstance()->modelMaxLength(m_modelInfo);
const int32_t top_k = MySettings::globalInstance()->modelTopK(m_modelInfo);
const float top_p = MySettings::globalInstance()->modelTopP(m_modelInfo);
const float min_p = MySettings::globalInstance()->modelMinP(m_modelInfo);
2023-10-10 16:43:02 -04:00
const float temp = MySettings::globalInstance()->modelTemperature(m_modelInfo);
const int32_t n_batch = MySettings::globalInstance()->modelPromptBatchSize(m_modelInfo);
const float repeat_penalty = MySettings::globalInstance()->modelRepeatPenalty(m_modelInfo);
const int32_t repeat_penalty_tokens = MySettings::globalInstance()->modelRepeatPenaltyTokens(m_modelInfo);
int n_threads = MySettings::globalInstance()->threadCount();
m_ctx.n_predict = n_predict;
m_ctx.top_k = top_k;
m_ctx.top_p = top_p;
m_ctx.min_p = min_p;
2023-10-10 16:43:02 -04:00
m_ctx.temp = temp;
m_ctx.n_batch = n_batch;
m_ctx.repeat_penalty = repeat_penalty;
m_ctx.repeat_last_n = repeat_penalty_tokens;
m_llModelInfo.model->setThreadCount(n_threads);
auto it = m_stateFromText.begin();
while (it < m_stateFromText.end()) {
auto &prompt = *it++;
Q_ASSERT(prompt.first == "Prompt: ");
Q_ASSERT(it < m_stateFromText.end());
auto &response = *it++;
Q_ASSERT(response.first != "Prompt: ");
auto responseText = response.second.toStdString();
m_llModelInfo.model->prompt(prompt.second.toStdString(), promptTemplate.toStdString(), promptFunc, nullptr,
/*allowContextShift*/ true, m_ctx, false, &responseText);
2023-10-10 16:43:02 -04:00
}
if (!m_stopGenerating) {
m_restoreStateFromText = false;
m_stateFromText.clear();
}
m_restoringFromText = false;
emit restoringFromTextChanged();
m_pristineLoadedState = false;
2023-09-29 13:53:43 -04:00
}