mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
add min_p sampling parameter (#2014)
Signed-off-by: Christopher Barrera <cb@arda.tx.rr.com> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
This commit is contained in:
parent
a153cc5b25
commit
f8b1069a1c
@ -64,6 +64,7 @@ static int llama_sample_top_p_top_k(
|
||||
int last_n_tokens_size,
|
||||
int top_k,
|
||||
float top_p,
|
||||
float min_p,
|
||||
float temp,
|
||||
float repeat_penalty,
|
||||
int32_t pos) {
|
||||
@ -83,6 +84,7 @@ static int llama_sample_top_p_top_k(
|
||||
llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, 1.0f, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_min_p(ctx, &candidates_p, min_p, 1);
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
return llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
@ -392,7 +394,7 @@ LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const
|
||||
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
|
||||
return llama_sample_top_p_top_k(d_ptr->ctx,
|
||||
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
|
||||
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
|
||||
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.min_p, promptCtx.temp,
|
||||
promptCtx.repeat_penalty, promptCtx.n_last_batch_tokens - 1);
|
||||
}
|
||||
|
||||
|
@ -66,6 +66,7 @@ public:
|
||||
int32_t n_predict = 200;
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float min_p = 0.0f;
|
||||
float temp = 0.9f;
|
||||
int32_t n_batch = 9;
|
||||
float repeat_penalty = 1.10f;
|
||||
|
@ -134,6 +134,7 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
|
||||
wrapper->promptContext.n_predict = ctx->n_predict;
|
||||
wrapper->promptContext.top_k = ctx->top_k;
|
||||
wrapper->promptContext.top_p = ctx->top_p;
|
||||
wrapper->promptContext.min_p = ctx->min_p;
|
||||
wrapper->promptContext.temp = ctx->temp;
|
||||
wrapper->promptContext.n_batch = ctx->n_batch;
|
||||
wrapper->promptContext.repeat_penalty = ctx->repeat_penalty;
|
||||
@ -156,6 +157,7 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
|
||||
ctx->n_predict = wrapper->promptContext.n_predict;
|
||||
ctx->top_k = wrapper->promptContext.top_k;
|
||||
ctx->top_p = wrapper->promptContext.top_p;
|
||||
ctx->min_p = wrapper->promptContext.min_p;
|
||||
ctx->temp = wrapper->promptContext.temp;
|
||||
ctx->n_batch = wrapper->promptContext.n_batch;
|
||||
ctx->repeat_penalty = wrapper->promptContext.repeat_penalty;
|
||||
|
@ -39,6 +39,7 @@ struct llmodel_prompt_context {
|
||||
int32_t n_predict; // number of tokens to predict
|
||||
int32_t top_k; // top k logits to sample from
|
||||
float top_p; // nucleus sampling probability threshold
|
||||
float min_p; // Min P sampling
|
||||
float temp; // temperature to adjust model's output distribution
|
||||
int32_t n_batch; // number of predictions to generate in parallel
|
||||
float repeat_penalty; // penalty factor for repeated tokens
|
||||
|
@ -120,6 +120,7 @@ def _old_loop(gpt4all_instance):
|
||||
n_predict=200,
|
||||
top_k=40,
|
||||
top_p=0.9,
|
||||
min_p=0.0,
|
||||
temp=0.9,
|
||||
n_batch=9,
|
||||
repeat_penalty=1.1,
|
||||
@ -156,6 +157,7 @@ def _new_loop(gpt4all_instance):
|
||||
temp=0.9,
|
||||
top_k=40,
|
||||
top_p=0.9,
|
||||
min_p=0.0,
|
||||
repeat_penalty=1.1,
|
||||
repeat_last_n=64,
|
||||
n_batch=9,
|
||||
|
@ -64,6 +64,15 @@ public unsafe class LLModelPromptContext
|
||||
set => _ctx.top_p = value;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// min p sampling probability threshold
|
||||
/// </summary>
|
||||
public float MinP
|
||||
{
|
||||
get => _ctx.min_p;
|
||||
set => _ctx.min_p = value;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// temperature to adjust model's output distribution
|
||||
/// </summary>
|
||||
|
@ -29,6 +29,8 @@ public unsafe partial struct llmodel_prompt_context
|
||||
|
||||
public float top_p;
|
||||
|
||||
public float min_p;
|
||||
|
||||
public float temp;
|
||||
|
||||
[NativeTypeName("int32_t")]
|
||||
|
@ -16,6 +16,7 @@ internal static class LLPromptContextExtensions
|
||||
n_predict = {ctx.n_predict}
|
||||
top_k = {ctx.top_k}
|
||||
top_p = {ctx.top_p}
|
||||
min_p = {ctx.min_p}
|
||||
temp = {ctx.temp}
|
||||
n_batch = {ctx.n_batch}
|
||||
repeat_penalty = {ctx.repeat_penalty}
|
||||
|
@ -12,6 +12,7 @@ public static class PredictRequestOptionsExtensions
|
||||
TokensSize = opts.TokensSize,
|
||||
TopK = opts.TopK,
|
||||
TopP = opts.TopP,
|
||||
MinP = opts.MinP,
|
||||
PastNum = opts.PastConversationTokensNum,
|
||||
RepeatPenalty = opts.RepeatPenalty,
|
||||
Temperature = opts.Temperature,
|
||||
|
@ -16,6 +16,8 @@ public record PredictRequestOptions
|
||||
|
||||
public float TopP { get; init; } = 0.9f;
|
||||
|
||||
public float MinP { get; init; } = 0.0f;
|
||||
|
||||
public float Temperature { get; init; } = 0.1f;
|
||||
|
||||
public int Batches { get; init; } = 8;
|
||||
|
@ -36,7 +36,7 @@ std::string res = "";
|
||||
void * mm;
|
||||
|
||||
void model_prompt( const char *prompt, void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens, int top_k,
|
||||
float top_p, float temp, int n_batch,float ctx_erase)
|
||||
float top_p, float min_p, float temp, int n_batch,float ctx_erase)
|
||||
{
|
||||
llmodel_model* model = (llmodel_model*) m;
|
||||
|
||||
@ -69,6 +69,7 @@ void model_prompt( const char *prompt, void *m, char* result, int repeat_last_n,
|
||||
.n_predict = 50,
|
||||
.top_k = 10,
|
||||
.top_p = 0.9,
|
||||
.min_p = 0.0,
|
||||
.temp = 1.0,
|
||||
.n_batch = 1,
|
||||
.repeat_penalty = 1.2,
|
||||
@ -83,6 +84,7 @@ void model_prompt( const char *prompt, void *m, char* result, int repeat_last_n,
|
||||
prompt_context->top_k = top_k;
|
||||
prompt_context->context_erase = ctx_erase;
|
||||
prompt_context->top_p = top_p;
|
||||
prompt_context->min_p = min_p;
|
||||
prompt_context->temp = temp;
|
||||
prompt_context->n_batch = n_batch;
|
||||
|
||||
|
@ -7,7 +7,7 @@ extern "C" {
|
||||
void* load_model(const char *fname, int n_threads);
|
||||
|
||||
void model_prompt( const char *prompt, void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens, int top_k,
|
||||
float top_p, float temp, int n_batch,float ctx_erase);
|
||||
float top_p, float min_p, float temp, int n_batch,float ctx_erase);
|
||||
|
||||
void free_model(void *state_ptr);
|
||||
|
||||
@ -15,4 +15,4 @@ extern unsigned char getTokenCallback(void *, char *);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@ -7,7 +7,7 @@ package gpt4all
|
||||
// #cgo LDFLAGS: -lgpt4all -lm -lstdc++ -ldl
|
||||
// void* load_model(const char *fname, int n_threads);
|
||||
// void model_prompt( const char *prompt, void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens, int top_k,
|
||||
// float top_p, float temp, int n_batch,float ctx_erase);
|
||||
// float top_p, float min_p, float temp, int n_batch,float ctx_erase);
|
||||
// void free_model(void *state_ptr);
|
||||
// extern unsigned char getTokenCallback(void *, char *);
|
||||
// void llmodel_set_implementation_search_path(const char *path);
|
||||
@ -58,7 +58,7 @@ func (l *Model) Predict(text string, opts ...PredictOption) (string, error) {
|
||||
out := make([]byte, po.Tokens)
|
||||
|
||||
C.model_prompt(input, l.state, (*C.char)(unsafe.Pointer(&out[0])), C.int(po.RepeatLastN), C.float(po.RepeatPenalty), C.int(po.ContextSize),
|
||||
C.int(po.Tokens), C.int(po.TopK), C.float(po.TopP), C.float(po.Temperature), C.int(po.Batch), C.float(po.ContextErase))
|
||||
C.int(po.Tokens), C.int(po.TopK), C.float(po.TopP), C.float(po.MinP), C.float(po.Temperature), C.int(po.Batch), C.float(po.ContextErase))
|
||||
|
||||
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
|
||||
res = strings.TrimPrefix(res, " ")
|
||||
|
@ -2,7 +2,7 @@ package gpt4all
|
||||
|
||||
type PredictOptions struct {
|
||||
ContextSize, RepeatLastN, Tokens, TopK, Batch int
|
||||
TopP, Temperature, ContextErase, RepeatPenalty float64
|
||||
TopP, MinP, Temperature, ContextErase, RepeatPenalty float64
|
||||
}
|
||||
|
||||
type PredictOption func(p *PredictOptions)
|
||||
@ -11,6 +11,7 @@ var DefaultOptions PredictOptions = PredictOptions{
|
||||
Tokens: 200,
|
||||
TopK: 10,
|
||||
TopP: 0.90,
|
||||
MinP: 0.0,
|
||||
Temperature: 0.96,
|
||||
Batch: 1,
|
||||
ContextErase: 0.55,
|
||||
@ -50,6 +51,13 @@ func SetTopP(topp float64) PredictOption {
|
||||
}
|
||||
}
|
||||
|
||||
// SetMinP sets the value for min p sampling
|
||||
func SetMinP(minp float64) PredictOption {
|
||||
return func(p *PredictOptions) {
|
||||
p.MinP = minp
|
||||
}
|
||||
}
|
||||
|
||||
// SetRepeatPenalty sets the repeat penalty.
|
||||
func SetRepeatPenalty(ce float64) PredictOption {
|
||||
return func(p *PredictOptions) {
|
||||
|
@ -32,6 +32,7 @@ public class LLModel implements AutoCloseable {
|
||||
n_predict.set(128);
|
||||
top_k.set(40);
|
||||
top_p.set(0.95);
|
||||
min_p.set(0.0);
|
||||
temp.set(0.28);
|
||||
n_batch.set(8);
|
||||
repeat_penalty.set(1.1);
|
||||
@ -71,6 +72,11 @@ public class LLModel implements AutoCloseable {
|
||||
return this;
|
||||
}
|
||||
|
||||
public Builder withMinP(float min_p) {
|
||||
configToBuild.min_p.set(min_p);
|
||||
return this;
|
||||
}
|
||||
|
||||
public Builder withTemp(float temp) {
|
||||
configToBuild.temp.set(temp);
|
||||
return this;
|
||||
|
@ -48,6 +48,7 @@ public interface LLModelLibrary {
|
||||
public final int32_t n_predict = new int32_t();
|
||||
public final int32_t top_k = new int32_t();
|
||||
public final Float top_p = new Float();
|
||||
public final Float min_p = new Float();
|
||||
public final Float temp = new Float();
|
||||
public final int32_t n_batch = new int32_t();
|
||||
public final Float repeat_penalty = new Float();
|
||||
|
@ -49,6 +49,7 @@ class LLModelPromptContext(ctypes.Structure):
|
||||
("n_predict", ctypes.c_int32),
|
||||
("top_k", ctypes.c_int32),
|
||||
("top_p", ctypes.c_float),
|
||||
("min_p", ctypes.c_float),
|
||||
("temp", ctypes.c_float),
|
||||
("n_batch", ctypes.c_int32),
|
||||
("repeat_penalty", ctypes.c_float),
|
||||
@ -241,6 +242,7 @@ class LLModel:
|
||||
n_predict: int = 4096,
|
||||
top_k: int = 40,
|
||||
top_p: float = 0.9,
|
||||
min_p: float = 0.0,
|
||||
temp: float = 0.1,
|
||||
n_batch: int = 8,
|
||||
repeat_penalty: float = 1.2,
|
||||
@ -257,6 +259,7 @@ class LLModel:
|
||||
n_predict=n_predict,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
min_p=min_p,
|
||||
temp=temp,
|
||||
n_batch=n_batch,
|
||||
repeat_penalty=repeat_penalty,
|
||||
@ -272,6 +275,7 @@ class LLModel:
|
||||
self.context.n_predict = n_predict
|
||||
self.context.top_k = top_k
|
||||
self.context.top_p = top_p
|
||||
self.context.min_p = min_p
|
||||
self.context.temp = temp
|
||||
self.context.n_batch = n_batch
|
||||
self.context.repeat_penalty = repeat_penalty
|
||||
@ -297,6 +301,7 @@ class LLModel:
|
||||
n_predict: int = 4096,
|
||||
top_k: int = 40,
|
||||
top_p: float = 0.9,
|
||||
min_p: float = 0.0,
|
||||
temp: float = 0.1,
|
||||
n_batch: int = 8,
|
||||
repeat_penalty: float = 1.2,
|
||||
@ -334,6 +339,7 @@ class LLModel:
|
||||
n_predict=n_predict,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
min_p=min_p,
|
||||
temp=temp,
|
||||
n_batch=n_batch,
|
||||
repeat_penalty=repeat_penalty,
|
||||
|
@ -289,6 +289,7 @@ class GPT4All:
|
||||
temp: float = 0.7,
|
||||
top_k: int = 40,
|
||||
top_p: float = 0.4,
|
||||
min_p: float = 0.0,
|
||||
repeat_penalty: float = 1.18,
|
||||
repeat_last_n: int = 64,
|
||||
n_batch: int = 8,
|
||||
@ -305,6 +306,7 @@ class GPT4All:
|
||||
temp: The model temperature. Larger values increase creativity but decrease factuality.
|
||||
top_k: Randomly sample from the top_k most likely tokens at each generation step. Set this to 1 for greedy decoding.
|
||||
top_p: Randomly sample at each generation step from the top most likely tokens whose probabilities add up to top_p.
|
||||
min_p: Randomly sample at each generation step from the top most likely tokens whose probabilities are at least min_p.
|
||||
repeat_penalty: Penalize the model for repetition. Higher values result in less repetition.
|
||||
repeat_last_n: How far in the models generation history to apply the repeat penalty.
|
||||
n_batch: Number of prompt tokens processed in parallel. Larger values decrease latency but increase resource requirements.
|
||||
@ -325,6 +327,7 @@ class GPT4All:
|
||||
temp=temp,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
min_p=min_p,
|
||||
repeat_penalty=repeat_penalty,
|
||||
repeat_last_n=repeat_last_n,
|
||||
n_batch=n_batch,
|
||||
|
@ -248,6 +248,7 @@ Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo& info)
|
||||
.n_predict = 128,
|
||||
.top_k = 40,
|
||||
.top_p = 0.9f,
|
||||
.min_p = 0.0f,
|
||||
.temp = 0.72f,
|
||||
.n_batch = 8,
|
||||
.repeat_penalty = 1.0f,
|
||||
@ -277,6 +278,8 @@ Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo& info)
|
||||
promptContext.top_k = inputObject.Get("top_k").As<Napi::Number>().Int32Value();
|
||||
if(inputObject.Has("top_p"))
|
||||
promptContext.top_p = inputObject.Get("top_p").As<Napi::Number>().FloatValue();
|
||||
if(inputObject.Has("min_p"))
|
||||
promptContext.min_p = inputObject.Get("min_p").As<Napi::Number>().FloatValue();
|
||||
if(inputObject.Has("temp"))
|
||||
promptContext.temp = inputObject.Get("temp").As<Napi::Number>().FloatValue();
|
||||
if(inputObject.Has("n_batch"))
|
||||
|
@ -568,16 +568,17 @@ bool ChatLLM::prompt(const QList<QString> &collectionList, const QString &prompt
|
||||
const int32_t n_predict = MySettings::globalInstance()->modelMaxLength(m_modelInfo);
|
||||
const int32_t top_k = MySettings::globalInstance()->modelTopK(m_modelInfo);
|
||||
const float top_p = MySettings::globalInstance()->modelTopP(m_modelInfo);
|
||||
const float min_p = MySettings::globalInstance()->modelMinP(m_modelInfo);
|
||||
const float temp = MySettings::globalInstance()->modelTemperature(m_modelInfo);
|
||||
const int32_t n_batch = MySettings::globalInstance()->modelPromptBatchSize(m_modelInfo);
|
||||
const float repeat_penalty = MySettings::globalInstance()->modelRepeatPenalty(m_modelInfo);
|
||||
const int32_t repeat_penalty_tokens = MySettings::globalInstance()->modelRepeatPenaltyTokens(m_modelInfo);
|
||||
return promptInternal(collectionList, prompt, promptTemplate, n_predict, top_k, top_p, temp, n_batch,
|
||||
return promptInternal(collectionList, prompt, promptTemplate, n_predict, top_k, top_p, min_p, temp, n_batch,
|
||||
repeat_penalty, repeat_penalty_tokens);
|
||||
}
|
||||
|
||||
bool ChatLLM::promptInternal(const QList<QString> &collectionList, const QString &prompt, const QString &promptTemplate,
|
||||
int32_t n_predict, int32_t top_k, float top_p, float temp, int32_t n_batch, float repeat_penalty,
|
||||
int32_t n_predict, int32_t top_k, float top_p, float min_p, float temp, int32_t n_batch, float repeat_penalty,
|
||||
int32_t repeat_penalty_tokens)
|
||||
{
|
||||
if (!isModelLoaded())
|
||||
@ -608,6 +609,7 @@ bool ChatLLM::promptInternal(const QList<QString> &collectionList, const QString
|
||||
m_ctx.n_predict = n_predict;
|
||||
m_ctx.top_k = top_k;
|
||||
m_ctx.top_p = top_p;
|
||||
m_ctx.min_p = min_p;
|
||||
m_ctx.temp = temp;
|
||||
m_ctx.n_batch = n_batch;
|
||||
m_ctx.repeat_penalty = repeat_penalty;
|
||||
@ -1020,6 +1022,7 @@ void ChatLLM::processSystemPrompt()
|
||||
const int32_t n_predict = MySettings::globalInstance()->modelMaxLength(m_modelInfo);
|
||||
const int32_t top_k = MySettings::globalInstance()->modelTopK(m_modelInfo);
|
||||
const float top_p = MySettings::globalInstance()->modelTopP(m_modelInfo);
|
||||
const float min_p = MySettings::globalInstance()->modelMinP(m_modelInfo);
|
||||
const float temp = MySettings::globalInstance()->modelTemperature(m_modelInfo);
|
||||
const int32_t n_batch = MySettings::globalInstance()->modelPromptBatchSize(m_modelInfo);
|
||||
const float repeat_penalty = MySettings::globalInstance()->modelRepeatPenalty(m_modelInfo);
|
||||
@ -1028,6 +1031,7 @@ void ChatLLM::processSystemPrompt()
|
||||
m_ctx.n_predict = n_predict;
|
||||
m_ctx.top_k = top_k;
|
||||
m_ctx.top_p = top_p;
|
||||
m_ctx.min_p = min_p;
|
||||
m_ctx.temp = temp;
|
||||
m_ctx.n_batch = n_batch;
|
||||
m_ctx.repeat_penalty = repeat_penalty;
|
||||
@ -1067,6 +1071,7 @@ void ChatLLM::processRestoreStateFromText()
|
||||
const int32_t n_predict = MySettings::globalInstance()->modelMaxLength(m_modelInfo);
|
||||
const int32_t top_k = MySettings::globalInstance()->modelTopK(m_modelInfo);
|
||||
const float top_p = MySettings::globalInstance()->modelTopP(m_modelInfo);
|
||||
const float min_p = MySettings::globalInstance()->modelMinP(m_modelInfo);
|
||||
const float temp = MySettings::globalInstance()->modelTemperature(m_modelInfo);
|
||||
const int32_t n_batch = MySettings::globalInstance()->modelPromptBatchSize(m_modelInfo);
|
||||
const float repeat_penalty = MySettings::globalInstance()->modelRepeatPenalty(m_modelInfo);
|
||||
@ -1075,6 +1080,7 @@ void ChatLLM::processRestoreStateFromText()
|
||||
m_ctx.n_predict = n_predict;
|
||||
m_ctx.top_k = top_k;
|
||||
m_ctx.top_p = top_p;
|
||||
m_ctx.min_p = min_p;
|
||||
m_ctx.temp = temp;
|
||||
m_ctx.n_batch = n_batch;
|
||||
m_ctx.repeat_penalty = repeat_penalty;
|
||||
|
@ -139,7 +139,7 @@ Q_SIGNALS:
|
||||
|
||||
protected:
|
||||
bool promptInternal(const QList<QString> &collectionList, const QString &prompt, const QString &promptTemplate,
|
||||
int32_t n_predict, int32_t top_k, float top_p, float temp, int32_t n_batch, float repeat_penalty,
|
||||
int32_t n_predict, int32_t top_k, float top_p, float min_p, float temp, int32_t n_batch, float repeat_penalty,
|
||||
int32_t repeat_penalty_tokens);
|
||||
bool handlePrompt(int32_t token);
|
||||
bool handleResponse(int32_t token, const std::string &response);
|
||||
|
@ -1380,6 +1380,7 @@ Window {
|
||||
MySettings.maxLength,
|
||||
MySettings.topK,
|
||||
MySettings.topP,
|
||||
MySettings.minP,
|
||||
MySettings.temperature,
|
||||
MySettings.promptBatchSize,
|
||||
MySettings.repeatPenalty,
|
||||
|
@ -60,12 +60,23 @@ double ModelInfo::topP() const
|
||||
return MySettings::globalInstance()->modelTopP(*this);
|
||||
}
|
||||
|
||||
double ModelInfo::minP() const
|
||||
{
|
||||
return MySettings::globalInstance()->modelMinP(*this);
|
||||
}
|
||||
|
||||
void ModelInfo::setTopP(double p)
|
||||
{
|
||||
if (isClone) MySettings::globalInstance()->setModelTopP(*this, p, isClone /*force*/);
|
||||
m_topP = p;
|
||||
}
|
||||
|
||||
void ModelInfo::setMinP(double p)
|
||||
{
|
||||
if (isClone) MySettings::globalInstance()->setModelMinP(*this, p, isClone /*force*/);
|
||||
m_minP = p;
|
||||
}
|
||||
|
||||
int ModelInfo::topK() const
|
||||
{
|
||||
return MySettings::globalInstance()->modelTopK(*this);
|
||||
@ -321,6 +332,7 @@ ModelList::ModelList()
|
||||
connect(MySettings::globalInstance(), &MySettings::nameChanged, this, &ModelList::updateDataForSettings);
|
||||
connect(MySettings::globalInstance(), &MySettings::temperatureChanged, this, &ModelList::updateDataForSettings);
|
||||
connect(MySettings::globalInstance(), &MySettings::topPChanged, this, &ModelList::updateDataForSettings);
|
||||
connect(MySettings::globalInstance(), &MySettings::minPChanged, this, &ModelList::updateDataForSettings);
|
||||
connect(MySettings::globalInstance(), &MySettings::topKChanged, this, &ModelList::updateDataForSettings);
|
||||
connect(MySettings::globalInstance(), &MySettings::maxLengthChanged, this, &ModelList::updateDataForSettings);
|
||||
connect(MySettings::globalInstance(), &MySettings::promptBatchSizeChanged, this, &ModelList::updateDataForSettings);
|
||||
@ -571,6 +583,8 @@ QVariant ModelList::dataInternal(const ModelInfo *info, int role) const
|
||||
return info->temperature();
|
||||
case TopPRole:
|
||||
return info->topP();
|
||||
case MinPRole:
|
||||
return info->minP();
|
||||
case TopKRole:
|
||||
return info->topK();
|
||||
case MaxLengthRole:
|
||||
@ -700,6 +714,8 @@ void ModelList::updateData(const QString &id, int role, const QVariant &value)
|
||||
info->setTemperature(value.toDouble()); break;
|
||||
case TopPRole:
|
||||
info->setTopP(value.toDouble()); break;
|
||||
case MinPRole:
|
||||
info->setMinP(value.toDouble()); break;
|
||||
case TopKRole:
|
||||
info->setTopK(value.toInt()); break;
|
||||
case MaxLengthRole:
|
||||
@ -797,6 +813,7 @@ QString ModelList::clone(const ModelInfo &model)
|
||||
updateData(id, ModelList::OnlineRole, model.isOnline);
|
||||
updateData(id, ModelList::TemperatureRole, model.temperature());
|
||||
updateData(id, ModelList::TopPRole, model.topP());
|
||||
updateData(id, ModelList::MinPRole, model.minP());
|
||||
updateData(id, ModelList::TopKRole, model.topK());
|
||||
updateData(id, ModelList::MaxLengthRole, model.maxLength());
|
||||
updateData(id, ModelList::PromptBatchSizeRole, model.promptBatchSize());
|
||||
@ -1163,6 +1180,8 @@ void ModelList::parseModelsJsonFile(const QByteArray &jsonData, bool save)
|
||||
updateData(id, ModelList::TemperatureRole, obj["temperature"].toDouble());
|
||||
if (obj.contains("topP"))
|
||||
updateData(id, ModelList::TopPRole, obj["topP"].toDouble());
|
||||
if (obj.contains("minP"))
|
||||
updateData(id, ModelList::MinPRole, obj["minP"].toDouble());
|
||||
if (obj.contains("topK"))
|
||||
updateData(id, ModelList::TopKRole, obj["topK"].toInt());
|
||||
if (obj.contains("maxLength"))
|
||||
@ -1287,6 +1306,8 @@ void ModelList::updateModelsFromSettings()
|
||||
const double temperature = settings.value(g + "/temperature").toDouble();
|
||||
Q_ASSERT(settings.contains(g + "/topP"));
|
||||
const double topP = settings.value(g + "/topP").toDouble();
|
||||
Q_ASSERT(settings.contains(g + "/minP"));
|
||||
const double minP = settings.value(g + "/minP").toDouble();
|
||||
Q_ASSERT(settings.contains(g + "/topK"));
|
||||
const int topK = settings.value(g + "/topK").toInt();
|
||||
Q_ASSERT(settings.contains(g + "/maxLength"));
|
||||
@ -1312,6 +1333,7 @@ void ModelList::updateModelsFromSettings()
|
||||
updateData(id, ModelList::FilenameRole, filename);
|
||||
updateData(id, ModelList::TemperatureRole, temperature);
|
||||
updateData(id, ModelList::TopPRole, topP);
|
||||
updateData(id, ModelList::MinPRole, minP);
|
||||
updateData(id, ModelList::TopKRole, topK);
|
||||
updateData(id, ModelList::MaxLengthRole, maxLength);
|
||||
updateData(id, ModelList::PromptBatchSizeRole, promptBatchSize);
|
||||
|
@ -36,6 +36,7 @@ struct ModelInfo {
|
||||
Q_PROPERTY(bool isClone MEMBER isClone)
|
||||
Q_PROPERTY(double temperature READ temperature WRITE setTemperature)
|
||||
Q_PROPERTY(double topP READ topP WRITE setTopP)
|
||||
Q_PROPERTY(double minP READ minP WRITE setMinP)
|
||||
Q_PROPERTY(int topK READ topK WRITE setTopK)
|
||||
Q_PROPERTY(int maxLength READ maxLength WRITE setMaxLength)
|
||||
Q_PROPERTY(int promptBatchSize READ promptBatchSize WRITE setPromptBatchSize)
|
||||
@ -92,6 +93,8 @@ public:
|
||||
void setTemperature(double t);
|
||||
double topP() const;
|
||||
void setTopP(double p);
|
||||
double minP() const;
|
||||
void setMinP(double p);
|
||||
int topK() const;
|
||||
void setTopK(int k);
|
||||
int maxLength() const;
|
||||
@ -119,6 +122,7 @@ private:
|
||||
QString m_filename;
|
||||
double m_temperature = 0.7;
|
||||
double m_topP = 0.4;
|
||||
double m_minP = 0.0;
|
||||
int m_topK = 40;
|
||||
int m_maxLength = 4096;
|
||||
int m_promptBatchSize = 128;
|
||||
@ -247,6 +251,7 @@ public:
|
||||
RepeatPenaltyTokensRole,
|
||||
PromptTemplateRole,
|
||||
SystemPromptRole,
|
||||
MinPRole,
|
||||
};
|
||||
|
||||
QHash<int, QByteArray> roleNames() const override
|
||||
@ -282,6 +287,7 @@ public:
|
||||
roles[IsCloneRole] = "isClone";
|
||||
roles[TemperatureRole] = "temperature";
|
||||
roles[TopPRole] = "topP";
|
||||
roles[MinPRole] = "minP";
|
||||
roles[TopKRole] = "topK";
|
||||
roles[MaxLengthRole] = "maxLength";
|
||||
roles[PromptBatchSizeRole] = "promptBatchSize";
|
||||
|
@ -87,6 +87,7 @@ void MySettings::restoreModelDefaults(const ModelInfo &model)
|
||||
{
|
||||
setModelTemperature(model, model.m_temperature);
|
||||
setModelTopP(model, model.m_topP);
|
||||
setModelMinP(model, model.m_minP);
|
||||
setModelTopK(model, model.m_topK);;
|
||||
setModelMaxLength(model, model.m_maxLength);
|
||||
setModelPromptBatchSize(model, model.m_promptBatchSize);
|
||||
@ -201,6 +202,13 @@ double MySettings::modelTopP(const ModelInfo &m) const
|
||||
return setting.value(QString("model-%1").arg(m.id()) + "/topP", m.m_topP).toDouble();
|
||||
}
|
||||
|
||||
double MySettings::modelMinP(const ModelInfo &m) const
|
||||
{
|
||||
QSettings setting;
|
||||
setting.sync();
|
||||
return setting.value(QString("model-%1").arg(m.id()) + "/minP", m.m_minP).toDouble();
|
||||
}
|
||||
|
||||
void MySettings::setModelTopP(const ModelInfo &m, double p, bool force)
|
||||
{
|
||||
if (modelTopP(m) == p && !force)
|
||||
@ -216,6 +224,21 @@ void MySettings::setModelTopP(const ModelInfo &m, double p, bool force)
|
||||
emit topPChanged(m);
|
||||
}
|
||||
|
||||
void MySettings::setModelMinP(const ModelInfo &m, double p, bool force)
|
||||
{
|
||||
if (modelMinP(m) == p && !force)
|
||||
return;
|
||||
|
||||
QSettings setting;
|
||||
if (m.m_minP == p && !m.isClone)
|
||||
setting.remove(QString("model-%1").arg(m.id()) + "/minP");
|
||||
else
|
||||
setting.setValue(QString("model-%1").arg(m.id()) + "/minP", p);
|
||||
setting.sync();
|
||||
if (!force)
|
||||
emit minPChanged(m);
|
||||
}
|
||||
|
||||
int MySettings::modelTopK(const ModelInfo &m) const
|
||||
{
|
||||
QSettings setting;
|
||||
|
@ -47,6 +47,8 @@ public:
|
||||
Q_INVOKABLE void setModelTemperature(const ModelInfo &m, double t, bool force = false);
|
||||
double modelTopP(const ModelInfo &m) const;
|
||||
Q_INVOKABLE void setModelTopP(const ModelInfo &m, double p, bool force = false);
|
||||
double modelMinP(const ModelInfo &m) const;
|
||||
Q_INVOKABLE void setModelMinP(const ModelInfo &m, double p, bool force = false);
|
||||
int modelTopK(const ModelInfo &m) const;
|
||||
Q_INVOKABLE void setModelTopK(const ModelInfo &m, int k, bool force = false);
|
||||
int modelMaxLength(const ModelInfo &m) const;
|
||||
@ -119,6 +121,7 @@ Q_SIGNALS:
|
||||
void filenameChanged(const ModelInfo &model);
|
||||
void temperatureChanged(const ModelInfo &model);
|
||||
void topPChanged(const ModelInfo &model);
|
||||
void minPChanged(const ModelInfo &model);
|
||||
void topKChanged(const ModelInfo &model);
|
||||
void maxLengthChanged(const ModelInfo &model);
|
||||
void promptBatchSizeChanged(const ModelInfo &model);
|
||||
|
@ -452,6 +452,50 @@ MySettingsTab {
|
||||
Accessible.name: topPLabel.text
|
||||
Accessible.description: ToolTip.text
|
||||
}
|
||||
MySettingsLabel {
|
||||
id: minPLabel
|
||||
text: qsTr("Min P")
|
||||
Layout.row: 3
|
||||
Layout.column: 0
|
||||
}
|
||||
MyTextField {
|
||||
id: minPField
|
||||
text: root.currentModelInfo.minP
|
||||
color: theme.textColor
|
||||
font.pixelSize: theme.fontSizeLarge
|
||||
ToolTip.text: qsTr("Sets the minimum relative probability for a token to be considered.")
|
||||
ToolTip.visible: hovered
|
||||
Layout.row: 3
|
||||
Layout.column: 1
|
||||
validator: DoubleValidator {
|
||||
locale: "C"
|
||||
}
|
||||
Connections {
|
||||
target: MySettings
|
||||
function onMinPChanged() {
|
||||
minPField.text = root.currentModelInfo.minP;
|
||||
}
|
||||
}
|
||||
Connections {
|
||||
target: root
|
||||
function onCurrentModelInfoChanged() {
|
||||
minPField.text = root.currentModelInfo.minP;
|
||||
}
|
||||
}
|
||||
onEditingFinished: {
|
||||
var val = parseFloat(text)
|
||||
if (!isNaN(val)) {
|
||||
MySettings.setModelMinP(root.currentModelInfo, val)
|
||||
focus = false
|
||||
} else {
|
||||
text = root.currentModelInfo.minP
|
||||
}
|
||||
}
|
||||
Accessible.role: Accessible.EditableText
|
||||
Accessible.name: minPLabel.text
|
||||
Accessible.description: ToolTip.text
|
||||
}
|
||||
|
||||
MySettingsLabel {
|
||||
id: topKLabel
|
||||
visible: !root.currentModelInfo.isOnline
|
||||
@ -592,8 +636,8 @@ MySettingsTab {
|
||||
id: repeatPenaltyLabel
|
||||
visible: !root.currentModelInfo.isOnline
|
||||
text: qsTr("Repeat Penalty")
|
||||
Layout.row: 3
|
||||
Layout.column: 0
|
||||
Layout.row: 4
|
||||
Layout.column: 2
|
||||
}
|
||||
MyTextField {
|
||||
id: repeatPenaltyField
|
||||
@ -603,8 +647,8 @@ MySettingsTab {
|
||||
font.pixelSize: theme.fontSizeLarge
|
||||
ToolTip.text: qsTr("Amount to penalize repetitiveness of the output")
|
||||
ToolTip.visible: hovered
|
||||
Layout.row: 3
|
||||
Layout.column: 1
|
||||
Layout.row: 4
|
||||
Layout.column: 3
|
||||
validator: DoubleValidator {
|
||||
locale: "C"
|
||||
}
|
||||
|
@ -205,6 +205,10 @@ QHttpServerResponse Server::handleCompletionRequest(const QHttpServerRequest &re
|
||||
if (body.contains("top_p"))
|
||||
top_p = body["top_p"].toDouble();
|
||||
|
||||
float min_p = 0.f;
|
||||
if (body.contains("min_p"))
|
||||
min_p = body["min_p"].toDouble();
|
||||
|
||||
int n = 1;
|
||||
if (body.contains("n"))
|
||||
n = body["n"].toInt();
|
||||
@ -312,6 +316,7 @@ QHttpServerResponse Server::handleCompletionRequest(const QHttpServerRequest &re
|
||||
max_tokens /*n_predict*/,
|
||||
top_k,
|
||||
top_p,
|
||||
min_p,
|
||||
temperature,
|
||||
n_batch,
|
||||
repeat_penalty,
|
||||
|
Loading…
Reference in New Issue
Block a user