gpt4all/gpt4all-backend/llmodel.h

111 lines
4.1 KiB
C
Raw Normal View History

#ifndef LLMODEL_H
#define LLMODEL_H
2023-06-01 07:57:10 -04:00
#include <string>
#include <functional>
#include <vector>
#include <string_view>
#include <fstream>
2023-05-04 20:01:32 -04:00
#include <cstdint>
#include <limits>
2023-06-30 19:13:25 -04:00
#define LLMODEL_MAX_PROMPT_BATCH 128
class Dlhandle;
class LLModel {
public:
using Token = int32_t;
2023-07-09 11:00:20 -04:00
class Implementation {
public:
Implementation(Dlhandle&&);
Implementation(const Implementation&) = delete;
Implementation(Implementation&&);
~Implementation();
std::string_view modelType() const { return m_modelType; }
std::string_view buildVariant() const { return m_buildVariant; }
static bool isImplementation(const Dlhandle&);
static const std::vector<Implementation>& implementationList();
static const Implementation *implementation(std::ifstream& f, const std::string& buildVariant);
static LLModel *construct(const std::string &modelPath, std::string buildVariant = "auto");
static void setImplementationsSearchPath(const std::string& path);
static const std::string& implementationsSearchPath();
private:
bool (*m_magicMatch)(std::ifstream& f);
LLModel *(*m_construct)();
private:
std::string_view m_modelType;
std::string_view m_buildVariant;
Dlhandle *m_dlhandle;
};
struct PromptContext {
std::vector<float> logits; // logits of current context
std::vector<int32_t> tokens; // current tokens in the context window
int32_t n_past = 0; // number of tokens in past conversation
int32_t n_ctx = 0; // number of tokens possible in context window
int32_t n_predict = 200;
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 9;
float repeat_penalty = 1.10f;
int32_t repeat_last_n = 64; // last n tokens to penalize
float contextErase = 0.75f; // percent of context to erase if we exceed the context
// window
};
explicit LLModel() {}
virtual ~LLModel() {}
2023-07-09 11:32:51 -04:00
virtual bool supportsEmbedding() const = 0;
virtual bool supportsCompletion() const = 0;
virtual bool loadModel(const std::string &modelPath) = 0;
virtual bool isModelLoaded() const = 0;
virtual size_t requiredMem(const std::string &modelPath) = 0;
virtual size_t stateSize() const { return 0; }
virtual size_t saveState(uint8_t */*dest*/) const { return 0; }
virtual size_t restoreState(const uint8_t */*src*/) { return 0; }
2023-07-09 11:32:51 -04:00
// This method requires the model to return true from supportsCompletion otherwise it will throw
// an error
virtual void prompt(const std::string &prompt,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &ctx);
2023-07-09 11:32:51 -04:00
virtual std::vector<float> embedding(const std::string &text);
virtual void setThreadCount(int32_t /*n_threads*/) {}
virtual int32_t threadCount() const { return 1; }
2023-07-09 11:00:20 -04:00
const Implementation& implementation() const {
return *m_implementation;
}
protected:
// These are pure virtual because subclasses need to implement as the default implementation of
// 'prompt' above calls these functions
virtual std::vector<Token> tokenize(PromptContext &, const std::string&) const = 0;
virtual std::string tokenToString(Token) const = 0;
virtual Token sampleToken(PromptContext &ctx) const = 0;
virtual bool evalTokens(PromptContext &/*ctx*/, const std::vector<int32_t>& /*tokens*/) const = 0;
virtual int32_t contextLength() const = 0;
virtual const std::vector<Token>& endTokens() const = 0;
// This is a helper function called from the default implementation of 'prompt' but it can be
// shared by all base classes so it isn't virtual
void recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate);
2023-06-02 10:57:21 -04:00
2023-07-09 11:00:20 -04:00
const Implementation *m_implementation = nullptr;
private:
friend class LLMImplementation;
};
2023-04-18 09:46:03 -04:00
#endif // LLMODEL_H