synapse-product/synapse/api/ratelimiting.py
Erik Johnston 963f4309fe
Make RateLimiter class check for ratelimit overrides ()
This should fix a class of bug where we forget to check if e.g. the appservice shouldn't be ratelimited.

We also check the `ratelimit_override` table to check if the user has ratelimiting disabled. That table is really only meant to override the event sender ratelimiting, so we don't use any values from it (as they might not make sense for different rate limits), but we do infer that if ratelimiting is disabled for the user we should disabled all ratelimits.

Fixes 
2021-03-30 12:06:09 +01:00

226 lines
9.3 KiB
Python

# Copyright 2014-2016 OpenMarket Ltd
# Copyright 2020 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from typing import Hashable, Optional, Tuple
from synapse.api.errors import LimitExceededError
from synapse.storage.databases.main import DataStore
from synapse.types import Requester
from synapse.util import Clock
class Ratelimiter:
"""
Ratelimit actions marked by arbitrary keys.
Args:
clock: A homeserver clock, for retrieving the current time
rate_hz: The long term number of actions that can be performed in a second.
burst_count: How many actions that can be performed before being limited.
"""
def __init__(
self, store: DataStore, clock: Clock, rate_hz: float, burst_count: int
):
self.clock = clock
self.rate_hz = rate_hz
self.burst_count = burst_count
self.store = store
# A ordered dictionary keeping track of actions, when they were last
# performed and how often. Each entry is a mapping from a key of arbitrary type
# to a tuple representing:
# * How many times an action has occurred since a point in time
# * The point in time
# * The rate_hz of this particular entry. This can vary per request
self.actions = (
OrderedDict()
) # type: OrderedDict[Hashable, Tuple[float, int, float]]
async def can_do_action(
self,
requester: Optional[Requester],
key: Optional[Hashable] = None,
rate_hz: Optional[float] = None,
burst_count: Optional[int] = None,
update: bool = True,
_time_now_s: Optional[int] = None,
) -> Tuple[bool, float]:
"""Can the entity (e.g. user or IP address) perform the action?
Checks if the user has ratelimiting disabled in the database by looking
for null/zero values in the `ratelimit_override` table. (Non-zero
values aren't honoured, as they're specific to the event sending
ratelimiter, rather than all ratelimiters)
Args:
requester: The requester that is doing the action, if any. Used to check
if the user has ratelimits disabled in the database.
key: An arbitrary key used to classify an action. Defaults to the
requester's user ID.
rate_hz: The long term number of actions that can be performed in a second.
Overrides the value set during instantiation if set.
burst_count: How many actions that can be performed before being limited.
Overrides the value set during instantiation if set.
update: Whether to count this check as performing the action
_time_now_s: The current time. Optional, defaults to the current time according
to self.clock. Only used by tests.
Returns:
A tuple containing:
* A bool indicating if they can perform the action now
* The reactor timestamp for when the action can be performed next.
-1 if rate_hz is less than or equal to zero
"""
if key is None:
if not requester:
raise ValueError("Must supply at least one of `requester` or `key`")
key = requester.user.to_string()
if requester:
# Disable rate limiting of users belonging to any AS that is configured
# not to be rate limited in its registration file (rate_limited: true|false).
if requester.app_service and not requester.app_service.is_rate_limited():
return True, -1.0
# Check if ratelimiting has been disabled for the user.
#
# Note that we don't use the returned rate/burst count, as the table
# is specifically for the event sending ratelimiter. Instead, we
# only use it to (somewhat cheekily) infer whether the user should
# be subject to any rate limiting or not.
override = await self.store.get_ratelimit_for_user(
requester.authenticated_entity
)
if override and not override.messages_per_second:
return True, -1.0
# Override default values if set
time_now_s = _time_now_s if _time_now_s is not None else self.clock.time()
rate_hz = rate_hz if rate_hz is not None else self.rate_hz
burst_count = burst_count if burst_count is not None else self.burst_count
# Remove any expired entries
self._prune_message_counts(time_now_s)
# Check if there is an existing count entry for this key
action_count, time_start, _ = self.actions.get(key, (0.0, time_now_s, 0.0))
# Check whether performing another action is allowed
time_delta = time_now_s - time_start
performed_count = action_count - time_delta * rate_hz
if performed_count < 0:
# Allow, reset back to count 1
allowed = True
time_start = time_now_s
action_count = 1.0
elif performed_count > burst_count - 1.0:
# Deny, we have exceeded our burst count
allowed = False
else:
# We haven't reached our limit yet
allowed = True
action_count += 1.0
if update:
self.actions[key] = (action_count, time_start, rate_hz)
if rate_hz > 0:
# Find out when the count of existing actions expires
time_allowed = time_start + (action_count - burst_count + 1) / rate_hz
# Don't give back a time in the past
if time_allowed < time_now_s:
time_allowed = time_now_s
else:
# XXX: Why is this -1? This seems to only be used in
# self.ratelimit. I guess so that clients get a time in the past and don't
# feel afraid to try again immediately
time_allowed = -1
return allowed, time_allowed
def _prune_message_counts(self, time_now_s: int):
"""Remove message count entries that have not exceeded their defined
rate_hz limit
Args:
time_now_s: The current time
"""
# We create a copy of the key list here as the dictionary is modified during
# the loop
for key in list(self.actions.keys()):
action_count, time_start, rate_hz = self.actions[key]
# Rate limit = "seconds since we started limiting this action" * rate_hz
# If this limit has not been exceeded, wipe our record of this action
time_delta = time_now_s - time_start
if action_count - time_delta * rate_hz > 0:
continue
else:
del self.actions[key]
async def ratelimit(
self,
requester: Optional[Requester],
key: Optional[Hashable] = None,
rate_hz: Optional[float] = None,
burst_count: Optional[int] = None,
update: bool = True,
_time_now_s: Optional[int] = None,
):
"""Checks if an action can be performed. If not, raises a LimitExceededError
Checks if the user has ratelimiting disabled in the database by looking
for null/zero values in the `ratelimit_override` table. (Non-zero
values aren't honoured, as they're specific to the event sending
ratelimiter, rather than all ratelimiters)
Args:
requester: The requester that is doing the action, if any. Used to check for
if the user has ratelimits disabled.
key: An arbitrary key used to classify an action. Defaults to the
requester's user ID.
rate_hz: The long term number of actions that can be performed in a second.
Overrides the value set during instantiation if set.
burst_count: How many actions that can be performed before being limited.
Overrides the value set during instantiation if set.
update: Whether to count this check as performing the action
_time_now_s: The current time. Optional, defaults to the current time according
to self.clock. Only used by tests.
Raises:
LimitExceededError: If an action could not be performed, along with the time in
milliseconds until the action can be performed again
"""
time_now_s = _time_now_s if _time_now_s is not None else self.clock.time()
allowed, time_allowed = await self.can_do_action(
requester,
key,
rate_hz=rate_hz,
burst_count=burst_count,
update=update,
_time_now_s=time_now_s,
)
if not allowed:
raise LimitExceededError(
retry_after_ms=int(1000 * (time_allowed - time_now_s))
)