mirror of
https://git.anonymousland.org/anonymousland/synapse-product.git
synced 2025-01-17 06:27:11 -05:00
502 lines
17 KiB
Python
502 lines
17 KiB
Python
# Copyright 2021 The Matrix.org Foundation C.I.C.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import codecs
|
|
import logging
|
|
import re
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Callable,
|
|
Dict,
|
|
Generator,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Set,
|
|
Union,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from lxml import etree
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
_charset_match = re.compile(
|
|
rb'<\s*meta[^>]*charset\s*=\s*"?([a-z0-9_-]+)"?', flags=re.I
|
|
)
|
|
_xml_encoding_match = re.compile(
|
|
rb'\s*<\s*\?\s*xml[^>]*encoding="([a-z0-9_-]+)"', flags=re.I
|
|
)
|
|
_content_type_match = re.compile(r'.*; *charset="?(.*?)"?(;|$)', flags=re.I)
|
|
|
|
# Certain elements aren't meant for display.
|
|
ARIA_ROLES_TO_IGNORE = {"directory", "menu", "menubar", "toolbar"}
|
|
|
|
|
|
def _normalise_encoding(encoding: str) -> Optional[str]:
|
|
"""Use the Python codec's name as the normalised entry."""
|
|
try:
|
|
return codecs.lookup(encoding).name
|
|
except LookupError:
|
|
return None
|
|
|
|
|
|
def _get_html_media_encodings(
|
|
body: bytes, content_type: Optional[str]
|
|
) -> Iterable[str]:
|
|
"""
|
|
Get potential encoding of the body based on the (presumably) HTML body or the content-type header.
|
|
|
|
The precedence used for finding a character encoding is:
|
|
|
|
1. <meta> tag with a charset declared.
|
|
2. The XML document's character encoding attribute.
|
|
3. The Content-Type header.
|
|
4. Fallback to utf-8.
|
|
5. Fallback to windows-1252.
|
|
|
|
This roughly follows the algorithm used by BeautifulSoup's bs4.dammit.EncodingDetector.
|
|
|
|
Args:
|
|
body: The HTML document, as bytes.
|
|
content_type: The Content-Type header.
|
|
|
|
Returns:
|
|
The character encoding of the body, as a string.
|
|
"""
|
|
# There's no point in returning an encoding more than once.
|
|
attempted_encodings: Set[str] = set()
|
|
|
|
# Limit searches to the first 1kb, since it ought to be at the top.
|
|
body_start = body[:1024]
|
|
|
|
# Check if it has an encoding set in a meta tag.
|
|
match = _charset_match.search(body_start)
|
|
if match:
|
|
encoding = _normalise_encoding(match.group(1).decode("ascii"))
|
|
if encoding:
|
|
attempted_encodings.add(encoding)
|
|
yield encoding
|
|
|
|
# TODO Support <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
|
|
|
|
# Check if it has an XML document with an encoding.
|
|
match = _xml_encoding_match.match(body_start)
|
|
if match:
|
|
encoding = _normalise_encoding(match.group(1).decode("ascii"))
|
|
if encoding and encoding not in attempted_encodings:
|
|
attempted_encodings.add(encoding)
|
|
yield encoding
|
|
|
|
# Check the HTTP Content-Type header for a character set.
|
|
if content_type:
|
|
content_match = _content_type_match.match(content_type)
|
|
if content_match:
|
|
encoding = _normalise_encoding(content_match.group(1))
|
|
if encoding and encoding not in attempted_encodings:
|
|
attempted_encodings.add(encoding)
|
|
yield encoding
|
|
|
|
# Finally, fallback to UTF-8, then windows-1252.
|
|
for fallback in ("utf-8", "cp1252"):
|
|
if fallback not in attempted_encodings:
|
|
yield fallback
|
|
|
|
|
|
def decode_body(
|
|
body: bytes, uri: str, content_type: Optional[str] = None
|
|
) -> Optional["etree.Element"]:
|
|
"""
|
|
This uses lxml to parse the HTML document.
|
|
|
|
Args:
|
|
body: The HTML document, as bytes.
|
|
uri: The URI used to download the body.
|
|
content_type: The Content-Type header.
|
|
|
|
Returns:
|
|
The parsed HTML body, or None if an error occurred during processed.
|
|
"""
|
|
# If there's no body, nothing useful is going to be found.
|
|
if not body:
|
|
return None
|
|
|
|
# The idea here is that multiple encodings are tried until one works.
|
|
# Unfortunately the result is never used and then LXML will decode the string
|
|
# again with the found encoding.
|
|
for encoding in _get_html_media_encodings(body, content_type):
|
|
try:
|
|
body.decode(encoding)
|
|
except Exception:
|
|
pass
|
|
else:
|
|
break
|
|
else:
|
|
logger.warning("Unable to decode HTML body for %s", uri)
|
|
return None
|
|
|
|
from lxml import etree
|
|
|
|
# Create an HTML parser.
|
|
parser = etree.HTMLParser(recover=True, encoding=encoding)
|
|
|
|
# Attempt to parse the body. Returns None if the body was successfully
|
|
# parsed, but no tree was found.
|
|
return etree.fromstring(body, parser)
|
|
|
|
|
|
def _get_meta_tags(
|
|
tree: "etree.Element",
|
|
property: str,
|
|
prefix: str,
|
|
property_mapper: Optional[Callable[[str], Optional[str]]] = None,
|
|
) -> Dict[str, Optional[str]]:
|
|
"""
|
|
Search for meta tags prefixed with a particular string.
|
|
|
|
Args:
|
|
tree: The parsed HTML document.
|
|
property: The name of the property which contains the tag name, e.g.
|
|
"property" for Open Graph.
|
|
prefix: The prefix on the property to search for, e.g. "og" for Open Graph.
|
|
property_mapper: An optional callable to map the property to the Open Graph
|
|
form. Can return None for a key to ignore that key.
|
|
|
|
Returns:
|
|
A map of tag name to value.
|
|
"""
|
|
results: Dict[str, Optional[str]] = {}
|
|
for tag in tree.xpath(
|
|
f"//*/meta[starts-with(@{property}, '{prefix}:')][@content][not(@content='')]"
|
|
):
|
|
# if we've got more than 50 tags, someone is taking the piss
|
|
if len(results) >= 50:
|
|
logger.warning(
|
|
"Skipping parsing of Open Graph for page with too many '%s:' tags",
|
|
prefix,
|
|
)
|
|
return {}
|
|
|
|
key = tag.attrib[property]
|
|
if property_mapper:
|
|
key = property_mapper(key)
|
|
# None is a special value used to ignore a value.
|
|
if key is None:
|
|
continue
|
|
|
|
results[key] = tag.attrib["content"]
|
|
|
|
return results
|
|
|
|
|
|
def _map_twitter_to_open_graph(key: str) -> Optional[str]:
|
|
"""
|
|
Map a Twitter card property to the analogous Open Graph property.
|
|
|
|
Args:
|
|
key: The Twitter card property (starts with "twitter:").
|
|
|
|
Returns:
|
|
The Open Graph property (starts with "og:") or None to have this property
|
|
be ignored.
|
|
"""
|
|
# Twitter card properties with no analogous Open Graph property.
|
|
if key == "twitter:card" or key == "twitter:creator":
|
|
return None
|
|
if key == "twitter:site":
|
|
return "og:site_name"
|
|
# Otherwise, swap twitter to og.
|
|
return "og" + key[7:]
|
|
|
|
|
|
def parse_html_to_open_graph(tree: "etree.Element") -> Dict[str, Optional[str]]:
|
|
"""
|
|
Parse the HTML document into an Open Graph response.
|
|
|
|
This uses lxml to search the HTML document for Open Graph data (or
|
|
synthesizes it from the document).
|
|
|
|
Args:
|
|
tree: The parsed HTML document.
|
|
|
|
Returns:
|
|
The Open Graph response as a dictionary.
|
|
"""
|
|
|
|
# Search for Open Graph (og:) meta tags, e.g.:
|
|
#
|
|
# "og:type" : "video",
|
|
# "og:url" : "https://www.youtube.com/watch?v=LXDBoHyjmtw",
|
|
# "og:site_name" : "YouTube",
|
|
# "og:video:type" : "application/x-shockwave-flash",
|
|
# "og:description" : "Fun stuff happening here",
|
|
# "og:title" : "RemoteJam - Matrix team hack for Disrupt Europe Hackathon",
|
|
# "og:image" : "https://i.ytimg.com/vi/LXDBoHyjmtw/maxresdefault.jpg",
|
|
# "og:video:url" : "http://www.youtube.com/v/LXDBoHyjmtw?version=3&autohide=1",
|
|
# "og:video:width" : "1280"
|
|
# "og:video:height" : "720",
|
|
# "og:video:secure_url": "https://www.youtube.com/v/LXDBoHyjmtw?version=3",
|
|
|
|
og = _get_meta_tags(tree, "property", "og")
|
|
|
|
# TODO: Search for properties specific to the different Open Graph types,
|
|
# such as article: meta tags, e.g.:
|
|
#
|
|
# "article:publisher" : "https://www.facebook.com/thethudonline" />
|
|
# "article:author" content="https://www.facebook.com/thethudonline" />
|
|
# "article:tag" content="baby" />
|
|
# "article:section" content="Breaking News" />
|
|
# "article:published_time" content="2016-03-31T19:58:24+00:00" />
|
|
# "article:modified_time" content="2016-04-01T18:31:53+00:00" />
|
|
|
|
# Search for Twitter Card (twitter:) meta tags, e.g.:
|
|
#
|
|
# "twitter:site" : "@matrixdotorg"
|
|
# "twitter:creator" : "@matrixdotorg"
|
|
#
|
|
# Twitter cards tags also duplicate Open Graph tags.
|
|
#
|
|
# See https://developer.twitter.com/en/docs/twitter-for-websites/cards/guides/getting-started
|
|
twitter = _get_meta_tags(tree, "name", "twitter", _map_twitter_to_open_graph)
|
|
# Merge the Twitter values with the Open Graph values, but do not overwrite
|
|
# information from Open Graph tags.
|
|
for key, value in twitter.items():
|
|
if key not in og:
|
|
og[key] = value
|
|
|
|
if "og:title" not in og:
|
|
# Attempt to find a title from the title tag, or the biggest header on the page.
|
|
title = tree.xpath("((//title)[1] | (//h1)[1] | (//h2)[1] | (//h3)[1])/text()")
|
|
if title:
|
|
og["og:title"] = title[0].strip()
|
|
else:
|
|
og["og:title"] = None
|
|
|
|
if "og:image" not in og:
|
|
meta_image = tree.xpath(
|
|
"//*/meta[translate(@itemprop, 'IMAGE', 'image')='image'][not(@content='')]/@content[1]"
|
|
)
|
|
# If a meta image is found, use it.
|
|
if meta_image:
|
|
og["og:image"] = meta_image[0]
|
|
else:
|
|
# Try to find images which are larger than 10px by 10px.
|
|
#
|
|
# TODO: consider inlined CSS styles as well as width & height attribs
|
|
images = tree.xpath("//img[@src][number(@width)>10][number(@height)>10]")
|
|
images = sorted(
|
|
images,
|
|
key=lambda i: (
|
|
-1 * float(i.attrib["width"]) * float(i.attrib["height"])
|
|
),
|
|
)
|
|
# If no images were found, try to find *any* images.
|
|
if not images:
|
|
images = tree.xpath("//img[@src][1]")
|
|
if images:
|
|
og["og:image"] = images[0].attrib["src"]
|
|
|
|
# Finally, fallback to the favicon if nothing else.
|
|
else:
|
|
favicons = tree.xpath("//link[@href][contains(@rel, 'icon')]/@href[1]")
|
|
if favicons:
|
|
og["og:image"] = favicons[0]
|
|
|
|
if "og:description" not in og:
|
|
# Check the first meta description tag for content.
|
|
meta_description = tree.xpath(
|
|
"//*/meta[translate(@name, 'DESCRIPTION', 'description')='description'][not(@content='')]/@content[1]"
|
|
)
|
|
# If a meta description is found with content, use it.
|
|
if meta_description:
|
|
og["og:description"] = meta_description[0]
|
|
else:
|
|
og["og:description"] = parse_html_description(tree)
|
|
elif og["og:description"]:
|
|
# This must be a non-empty string at this point.
|
|
assert isinstance(og["og:description"], str)
|
|
og["og:description"] = summarize_paragraphs([og["og:description"]])
|
|
|
|
# TODO: delete the url downloads to stop diskfilling,
|
|
# as we only ever cared about its OG
|
|
return og
|
|
|
|
|
|
def parse_html_description(tree: "etree.Element") -> Optional[str]:
|
|
"""
|
|
Calculate a text description based on an HTML document.
|
|
|
|
Grabs any text nodes which are inside the <body/> tag, unless they are within
|
|
an HTML5 semantic markup tag (<header/>, <nav/>, <aside/>, <footer/>), or
|
|
if they are within a <script/>, <svg/> or <style/> tag, or if they are within
|
|
a tag whose content is usually only shown to old browsers
|
|
(<iframe/>, <video/>, <canvas/>, <picture/>).
|
|
|
|
This is a very very very coarse approximation to a plain text render of the page.
|
|
|
|
Args:
|
|
tree: The parsed HTML document.
|
|
|
|
Returns:
|
|
The plain text description, or None if one cannot be generated.
|
|
"""
|
|
# We don't just use XPATH here as that is slow on some machines.
|
|
|
|
from lxml import etree
|
|
|
|
TAGS_TO_REMOVE = {
|
|
"header",
|
|
"nav",
|
|
"aside",
|
|
"footer",
|
|
"script",
|
|
"noscript",
|
|
"style",
|
|
"svg",
|
|
"iframe",
|
|
"video",
|
|
"canvas",
|
|
"img",
|
|
"picture",
|
|
etree.Comment,
|
|
}
|
|
|
|
# Split all the text nodes into paragraphs (by splitting on new
|
|
# lines)
|
|
text_nodes = (
|
|
re.sub(r"\s+", "\n", el).strip()
|
|
for el in _iterate_over_text(tree.find("body"), TAGS_TO_REMOVE)
|
|
)
|
|
return summarize_paragraphs(text_nodes)
|
|
|
|
|
|
def _iterate_over_text(
|
|
tree: Optional["etree.Element"],
|
|
tags_to_ignore: Set[Union[str, "etree.Comment"]],
|
|
stack_limit: int = 1024,
|
|
) -> Generator[str, None, None]:
|
|
"""Iterate over the tree returning text nodes in a depth first fashion,
|
|
skipping text nodes inside certain tags.
|
|
|
|
Args:
|
|
tree: The parent element to iterate. Can be None if there isn't one.
|
|
tags_to_ignore: Set of tags to ignore
|
|
stack_limit: Maximum stack size limit for depth-first traversal.
|
|
Nodes will be dropped if this limit is hit, which may truncate the
|
|
textual result.
|
|
Intended to limit the maximum working memory when generating a preview.
|
|
"""
|
|
|
|
if tree is None:
|
|
return
|
|
|
|
# This is a stack whose items are elements to iterate over *or* strings
|
|
# to be returned.
|
|
elements: List[Union[str, "etree.Element"]] = [tree]
|
|
while elements:
|
|
el = elements.pop()
|
|
|
|
if isinstance(el, str):
|
|
yield el
|
|
elif el.tag not in tags_to_ignore:
|
|
# If the element isn't meant for display, ignore it.
|
|
if el.get("role") in ARIA_ROLES_TO_IGNORE:
|
|
continue
|
|
|
|
# el.text is the text before the first child, so we can immediately
|
|
# return it if the text exists.
|
|
if el.text:
|
|
yield el.text
|
|
|
|
# We add to the stack all the element's children, interspersed with
|
|
# each child's tail text (if it exists).
|
|
#
|
|
# We iterate in reverse order so that earlier pieces of text appear
|
|
# closer to the top of the stack.
|
|
for child in el.iterchildren(reversed=True):
|
|
if len(elements) > stack_limit:
|
|
# We've hit our limit for working memory
|
|
break
|
|
|
|
if child.tail:
|
|
# The tail text of a node is text that comes *after* the node,
|
|
# so we always include it even if we ignore the child node.
|
|
elements.append(child.tail)
|
|
|
|
elements.append(child)
|
|
|
|
|
|
def summarize_paragraphs(
|
|
text_nodes: Iterable[str], min_size: int = 200, max_size: int = 500
|
|
) -> Optional[str]:
|
|
"""
|
|
Try to get a summary respecting first paragraph and then word boundaries.
|
|
|
|
Args:
|
|
text_nodes: The paragraphs to summarize.
|
|
min_size: The minimum number of words to include.
|
|
max_size: The maximum number of words to include.
|
|
|
|
Returns:
|
|
A summary of the text nodes, or None if that was not possible.
|
|
"""
|
|
|
|
# TODO: Respect sentences?
|
|
|
|
description = ""
|
|
|
|
# Keep adding paragraphs until we get to the MIN_SIZE.
|
|
for text_node in text_nodes:
|
|
if len(description) < min_size:
|
|
text_node = re.sub(r"[\t \r\n]+", " ", text_node)
|
|
description += text_node + "\n\n"
|
|
else:
|
|
break
|
|
|
|
description = description.strip()
|
|
description = re.sub(r"[\t ]+", " ", description)
|
|
description = re.sub(r"[\t \r\n]*[\r\n]+", "\n\n", description)
|
|
|
|
# If the concatenation of paragraphs to get above MIN_SIZE
|
|
# took us over MAX_SIZE, then we need to truncate mid paragraph
|
|
if len(description) > max_size:
|
|
new_desc = ""
|
|
|
|
# This splits the paragraph into words, but keeping the
|
|
# (preceding) whitespace intact so we can easily concat
|
|
# words back together.
|
|
for match in re.finditer(r"\s*\S+", description):
|
|
word = match.group()
|
|
|
|
# Keep adding words while the total length is less than
|
|
# MAX_SIZE.
|
|
if len(word) + len(new_desc) < max_size:
|
|
new_desc += word
|
|
else:
|
|
# At this point the next word *will* take us over
|
|
# MAX_SIZE, but we also want to ensure that its not
|
|
# a huge word. If it is add it anyway and we'll
|
|
# truncate later.
|
|
if len(new_desc) < min_size:
|
|
new_desc += word
|
|
break
|
|
|
|
# Double check that we're not over the limit
|
|
if len(new_desc) > max_size:
|
|
new_desc = new_desc[:max_size]
|
|
|
|
# We always add an ellipsis because at the very least
|
|
# we chopped mid paragraph.
|
|
description = new_desc.strip() + "…"
|
|
return description if description else None
|