Richard van der Hoff 5c3c32f16f Metrics for number of RDATA commands received
I found myself wishing we had this.
2018-01-15 17:45:55 +00:00

656 lines
22 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2017 Vector Creations Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module contains the implementation of both the client and server
protocols.
The basic structure of the protocol is line based, where the initial word of
each line specifies the command. The rest of the line is parsed based on the
command. For example, the `RDATA` command is defined as::
RDATA <stream_name> <token> <row_json>
(Note that `<row_json>` may contains spaces, but cannot contain newlines.)
Blank lines are ignored.
# Example
An example iteraction is shown below. Each line is prefixed with '>' or '<' to
indicate which side is sending, these are *not* included on the wire::
* connection established *
> SERVER localhost:8823
> PING 1490197665618
< NAME synapse.app.appservice
< PING 1490197665618
< REPLICATE events 1
< REPLICATE backfill 1
< REPLICATE caches 1
> POSITION events 1
> POSITION backfill 1
> POSITION caches 1
> RDATA caches 2 ["get_user_by_id",["@01register-user:localhost:8823"],1490197670513]
> RDATA events 14 ["$149019767112vOHxz:localhost:8823",
"!AFDCvgApUmpdfVjIXm:localhost:8823","m.room.guest_access","",null]
< PING 1490197675618
> ERROR server stopping
* connection closed by server *
"""
from twisted.internet import defer
from twisted.protocols.basic import LineOnlyReceiver
from twisted.python.failure import Failure
from commands import (
COMMAND_MAP, VALID_CLIENT_COMMANDS, VALID_SERVER_COMMANDS,
ErrorCommand, ServerCommand, RdataCommand, PositionCommand, PingCommand,
NameCommand, ReplicateCommand, UserSyncCommand, SyncCommand,
)
from streams import STREAMS_MAP
from synapse.util.stringutils import random_string
from synapse.metrics.metric import CounterMetric
import logging
import synapse.metrics
import struct
import fcntl
metrics = synapse.metrics.get_metrics_for(__name__)
connection_close_counter = metrics.register_counter(
"close_reason", labels=["reason_type"],
)
# A list of all connected protocols. This allows us to send metrics about the
# connections.
connected_connections = []
logger = logging.getLogger(__name__)
PING_TIME = 5000
PING_TIMEOUT_MULTIPLIER = 5
PING_TIMEOUT_MS = PING_TIME * PING_TIMEOUT_MULTIPLIER
class ConnectionStates(object):
CONNECTING = "connecting"
ESTABLISHED = "established"
PAUSED = "paused"
CLOSED = "closed"
class BaseReplicationStreamProtocol(LineOnlyReceiver):
"""Base replication protocol shared between client and server.
Reads lines (ignoring blank ones) and parses them into command classes,
asserting that they are valid for the given direction, i.e. server commands
are only sent by the server.
On receiving a new command it calls `on_<COMMAND_NAME>` with the parsed
command.
It also sends `PING` periodically, and correctly times out remote connections
(if they send a `PING` command)
"""
delimiter = b'\n'
VALID_INBOUND_COMMANDS = [] # Valid commands we expect to receive
VALID_OUTBOUND_COMMANDS = [] # Valid commans we can send
max_line_buffer = 10000
def __init__(self, clock):
self.clock = clock
self.last_received_command = self.clock.time_msec()
self.last_sent_command = 0
self.time_we_closed = None # When we requested the connection be closed
self.received_ping = False # Have we reecived a ping from the other side
self.state = ConnectionStates.CONNECTING
self.name = "anon" # The name sent by a client.
self.conn_id = random_string(5) # To dedupe in case of name clashes.
# List of pending commands to send once we've established the connection
self.pending_commands = []
# The LoopingCall for sending pings.
self._send_ping_loop = None
self.inbound_commands_counter = CounterMetric(
"inbound_commands", labels=["command"],
)
self.outbound_commands_counter = CounterMetric(
"outbound_commands", labels=["command"],
)
def connectionMade(self):
logger.info("[%s] Connection established", self.id())
self.state = ConnectionStates.ESTABLISHED
connected_connections.append(self) # Register connection for metrics
self.transport.registerProducer(self, True) # For the *Producing callbacks
self._send_pending_commands()
# Starts sending pings
self._send_ping_loop = self.clock.looping_call(self.send_ping, 5000)
# Always send the initial PING so that the other side knows that they
# can time us out.
self.send_command(PingCommand(self.clock.time_msec()))
def send_ping(self):
"""Periodically sends a ping and checks if we should close the connection
due to the other side timing out.
"""
now = self.clock.time_msec()
if self.time_we_closed:
if now - self.time_we_closed > PING_TIMEOUT_MS:
logger.info(
"[%s] Failed to close connection gracefully, aborting", self.id()
)
self.transport.abortConnection()
else:
if now - self.last_sent_command >= PING_TIME:
self.send_command(PingCommand(now))
if self.received_ping and now - self.last_received_command > PING_TIMEOUT_MS:
logger.info(
"[%s] Connection hasn't received command in %r ms. Closing.",
self.id(), now - self.last_received_command
)
self.send_error("ping timeout")
def lineReceived(self, line):
"""Called when we've received a line
"""
if line.strip() == "":
# Ignore blank lines
return
line = line.decode("utf-8")
cmd_name, rest_of_line = line.split(" ", 1)
if cmd_name not in self.VALID_INBOUND_COMMANDS:
logger.error("[%s] invalid command %s", self.id(), cmd_name)
self.send_error("invalid command: %s", cmd_name)
return
self.last_received_command = self.clock.time_msec()
self.inbound_commands_counter.inc(cmd_name)
cmd_cls = COMMAND_MAP[cmd_name]
try:
cmd = cmd_cls.from_line(rest_of_line)
except Exception as e:
logger.exception(
"[%s] failed to parse line %r: %r", self.id(), cmd_name, rest_of_line
)
self.send_error(
"failed to parse line for %r: %r (%r):" % (cmd_name, e, rest_of_line)
)
return
# Now lets try and call on_<CMD_NAME> function
try:
getattr(self, "on_%s" % (cmd_name,))(cmd)
except Exception:
logger.exception("[%s] Failed to handle line: %r", self.id(), line)
def close(self):
logger.warn("[%s] Closing connection", self.id())
self.time_we_closed = self.clock.time_msec()
self.transport.loseConnection()
self.on_connection_closed()
def send_error(self, error_string, *args):
"""Send an error to remote and close the connection.
"""
self.send_command(ErrorCommand(error_string % args))
self.close()
def send_command(self, cmd, do_buffer=True):
"""Send a command if connection has been established.
Args:
cmd (Command)
do_buffer (bool): Whether to buffer the message or always attempt
to send the command. This is mostly used to send an error
message if we're about to close the connection due our buffers
becoming full.
"""
if self.state == ConnectionStates.CLOSED:
logger.debug("[%s] Not sending, connection closed", self.id())
return
if do_buffer and self.state != ConnectionStates.ESTABLISHED:
self._queue_command(cmd)
return
self.outbound_commands_counter.inc(cmd.NAME)
string = "%s %s" % (cmd.NAME, cmd.to_line(),)
if "\n" in string:
raise Exception("Unexpected newline in command: %r", string)
self.sendLine(string.encode("utf-8"))
self.last_sent_command = self.clock.time_msec()
def _queue_command(self, cmd):
"""Queue the command until the connection is ready to write to again.
"""
logger.debug("[%s] Queing as conn %r, cmd: %r", self.id(), self.state, cmd)
self.pending_commands.append(cmd)
if len(self.pending_commands) > self.max_line_buffer:
# The other side is failing to keep up and out buffers are becoming
# full, so lets close the connection.
# XXX: should we squawk more loudly?
logger.error("[%s] Remote failed to keep up", self.id())
self.send_command(ErrorCommand("Failed to keep up"), do_buffer=False)
self.close()
def _send_pending_commands(self):
"""Send any queued commandes
"""
pending = self.pending_commands
self.pending_commands = []
for cmd in pending:
self.send_command(cmd)
def on_PING(self, line):
self.received_ping = True
def on_ERROR(self, cmd):
logger.error("[%s] Remote reported error: %r", self.id(), cmd.data)
def pauseProducing(self):
"""This is called when both the kernel send buffer and the twisted
tcp connection send buffers have become full.
We don't actually have any control over those sizes, so we buffer some
commands ourselves before knifing the connection due to the remote
failing to keep up.
"""
logger.info("[%s] Pause producing", self.id())
self.state = ConnectionStates.PAUSED
def resumeProducing(self):
"""The remote has caught up after we started buffering!
"""
logger.info("[%s] Resume producing", self.id())
self.state = ConnectionStates.ESTABLISHED
self._send_pending_commands()
def stopProducing(self):
"""We're never going to send any more data (normally because either
we or the remote has closed the connection)
"""
logger.info("[%s] Stop producing", self.id())
self.on_connection_closed()
def connectionLost(self, reason):
logger.info("[%s] Replication connection closed: %r", self.id(), reason)
if isinstance(reason, Failure):
connection_close_counter.inc(reason.type.__name__)
else:
connection_close_counter.inc(reason.__class__.__name__)
try:
# Remove us from list of connections to be monitored
connected_connections.remove(self)
except ValueError:
pass
# Stop the looping call sending pings.
if self._send_ping_loop and self._send_ping_loop.running:
self._send_ping_loop.stop()
self.on_connection_closed()
def on_connection_closed(self):
logger.info("[%s] Connection was closed", self.id())
self.state = ConnectionStates.CLOSED
self.pending_commands = []
if self.transport:
self.transport.unregisterProducer()
def __str__(self):
return "ReplicationConnection<name=%s,conn_id=%s,addr=%s>" % (
self.name, self.conn_id, self.addr,
)
def id(self):
return "%s-%s" % (self.name, self.conn_id)
class ServerReplicationStreamProtocol(BaseReplicationStreamProtocol):
VALID_INBOUND_COMMANDS = VALID_CLIENT_COMMANDS
VALID_OUTBOUND_COMMANDS = VALID_SERVER_COMMANDS
def __init__(self, server_name, clock, streamer, addr):
BaseReplicationStreamProtocol.__init__(self, clock) # Old style class
self.server_name = server_name
self.streamer = streamer
self.addr = addr
# The streams the client has subscribed to and is up to date with
self.replication_streams = set()
# The streams the client is currently subscribing to.
self.connecting_streams = set()
# Map from stream name to list of updates to send once we've finished
# subscribing the client to the stream.
self.pending_rdata = {}
def connectionMade(self):
self.send_command(ServerCommand(self.server_name))
BaseReplicationStreamProtocol.connectionMade(self)
self.streamer.new_connection(self)
def on_NAME(self, cmd):
logger.info("[%s] Renamed to %r", self.id(), cmd.data)
self.name = cmd.data
def on_USER_SYNC(self, cmd):
self.streamer.on_user_sync(
self.conn_id, cmd.user_id, cmd.is_syncing, cmd.last_sync_ms,
)
def on_REPLICATE(self, cmd):
stream_name = cmd.stream_name
token = cmd.token
if stream_name == "ALL":
# Subscribe to all streams we're publishing to.
for stream in self.streamer.streams_by_name.iterkeys():
self.subscribe_to_stream(stream, token)
else:
self.subscribe_to_stream(stream_name, token)
def on_FEDERATION_ACK(self, cmd):
self.streamer.federation_ack(cmd.token)
def on_REMOVE_PUSHER(self, cmd):
self.streamer.on_remove_pusher(cmd.app_id, cmd.push_key, cmd.user_id)
def on_INVALIDATE_CACHE(self, cmd):
self.streamer.on_invalidate_cache(cmd.cache_func, cmd.keys)
def on_USER_IP(self, cmd):
self.streamer.on_user_ip(
cmd.user_id, cmd.access_token, cmd.ip, cmd.user_agent, cmd.device_id,
cmd.last_seen,
)
@defer.inlineCallbacks
def subscribe_to_stream(self, stream_name, token):
"""Subscribe the remote to a streams.
This invloves checking if they've missed anything and sending those
updates down if they have. During that time new updates for the stream
are queued and sent once we've sent down any missed updates.
"""
self.replication_streams.discard(stream_name)
self.connecting_streams.add(stream_name)
try:
# Get missing updates
updates, current_token = yield self.streamer.get_stream_updates(
stream_name, token,
)
# Send all the missing updates
for update in updates:
token, row = update[0], update[1]
self.send_command(RdataCommand(stream_name, token, row))
# We send a POSITION command to ensure that they have an up to
# date token (especially useful if we didn't send any updates
# above)
self.send_command(PositionCommand(stream_name, current_token))
# Now we can send any updates that came in while we were subscribing
pending_rdata = self.pending_rdata.pop(stream_name, [])
for token, update in pending_rdata:
# Only send updates newer than the current token
if token > current_token:
self.send_command(RdataCommand(stream_name, token, update))
# They're now fully subscribed
self.replication_streams.add(stream_name)
except Exception as e:
logger.exception("[%s] Failed to handle REPLICATE command", self.id())
self.send_error("failed to handle replicate: %r", e)
finally:
self.connecting_streams.discard(stream_name)
def stream_update(self, stream_name, token, data):
"""Called when a new update is available to stream to clients.
We need to check if the client is interested in the stream or not
"""
if stream_name in self.replication_streams:
# The client is subscribed to the stream
self.send_command(RdataCommand(stream_name, token, data))
elif stream_name in self.connecting_streams:
# The client is being subscribed to the stream
logger.debug("[%s] Queuing RDATA %r %r", self.id(), stream_name, token)
self.pending_rdata.setdefault(stream_name, []).append((token, data))
else:
# The client isn't subscribed
logger.debug("[%s] Dropping RDATA %r %r", self.id(), stream_name, token)
def send_sync(self, data):
self.send_command(SyncCommand(data))
def on_connection_closed(self):
BaseReplicationStreamProtocol.on_connection_closed(self)
self.streamer.lost_connection(self)
class ClientReplicationStreamProtocol(BaseReplicationStreamProtocol):
VALID_INBOUND_COMMANDS = VALID_SERVER_COMMANDS
VALID_OUTBOUND_COMMANDS = VALID_CLIENT_COMMANDS
def __init__(self, client_name, server_name, clock, handler):
BaseReplicationStreamProtocol.__init__(self, clock)
self.client_name = client_name
self.server_name = server_name
self.handler = handler
# Map of stream to batched updates. See RdataCommand for info on how
# batching works.
self.pending_batches = {}
def connectionMade(self):
self.send_command(NameCommand(self.client_name))
BaseReplicationStreamProtocol.connectionMade(self)
# Once we've connected subscribe to the necessary streams
for stream_name, token in self.handler.get_streams_to_replicate().iteritems():
self.replicate(stream_name, token)
# Tell the server if we have any users currently syncing (should only
# happen on synchrotrons)
currently_syncing = self.handler.get_currently_syncing_users()
now = self.clock.time_msec()
for user_id in currently_syncing:
self.send_command(UserSyncCommand(user_id, True, now))
# We've now finished connecting to so inform the client handler
self.handler.update_connection(self)
def on_SERVER(self, cmd):
if cmd.data != self.server_name:
logger.error("[%s] Connected to wrong remote: %r", self.id(), cmd.data)
self.send_error("Wrong remote")
def on_RDATA(self, cmd):
stream_name = cmd.stream_name
inbound_rdata_count.inc(stream_name)
try:
row = STREAMS_MAP[stream_name].ROW_TYPE(*cmd.row)
except Exception:
logger.exception(
"[%s] Failed to parse RDATA: %r %r",
self.id(), stream_name, cmd.row
)
raise
if cmd.token is None:
# I.e. this is part of a batch of updates for this stream. Batch
# until we get an update for the stream with a non None token
self.pending_batches.setdefault(stream_name, []).append(row)
else:
# Check if this is the last of a batch of updates
rows = self.pending_batches.pop(stream_name, [])
rows.append(row)
self.handler.on_rdata(stream_name, cmd.token, rows)
def on_POSITION(self, cmd):
self.handler.on_position(cmd.stream_name, cmd.token)
def on_SYNC(self, cmd):
self.handler.on_sync(cmd.data)
def replicate(self, stream_name, token):
"""Send the subscription request to the server
"""
if stream_name not in STREAMS_MAP:
raise Exception("Invalid stream name %r" % (stream_name,))
logger.info(
"[%s] Subscribing to replication stream: %r from %r",
self.id(), stream_name, token
)
self.send_command(ReplicateCommand(stream_name, token))
def on_connection_closed(self):
BaseReplicationStreamProtocol.on_connection_closed(self)
self.handler.update_connection(None)
# The following simply registers metrics for the replication connections
metrics.register_callback(
"pending_commands",
lambda: {
(p.name, p.conn_id): len(p.pending_commands)
for p in connected_connections
},
labels=["name", "conn_id"],
)
def transport_buffer_size(protocol):
if protocol.transport:
size = len(protocol.transport.dataBuffer) + protocol.transport._tempDataLen
return size
return 0
metrics.register_callback(
"transport_send_buffer",
lambda: {
(p.name, p.conn_id): transport_buffer_size(p)
for p in connected_connections
},
labels=["name", "conn_id"],
)
def transport_kernel_read_buffer_size(protocol, read=True):
SIOCINQ = 0x541B
SIOCOUTQ = 0x5411
if protocol.transport:
fileno = protocol.transport.getHandle().fileno()
if read:
op = SIOCINQ
else:
op = SIOCOUTQ
size = struct.unpack("I", fcntl.ioctl(fileno, op, '\0\0\0\0'))[0]
return size
return 0
metrics.register_callback(
"transport_kernel_send_buffer",
lambda: {
(p.name, p.conn_id): transport_kernel_read_buffer_size(p, False)
for p in connected_connections
},
labels=["name", "conn_id"],
)
metrics.register_callback(
"transport_kernel_read_buffer",
lambda: {
(p.name, p.conn_id): transport_kernel_read_buffer_size(p, True)
for p in connected_connections
},
labels=["name", "conn_id"],
)
metrics.register_callback(
"inbound_commands",
lambda: {
(k[0], p.name, p.conn_id): count
for p in connected_connections
for k, count in p.inbound_commands_counter.counts.iteritems()
},
labels=["command", "name", "conn_id"],
)
metrics.register_callback(
"outbound_commands",
lambda: {
(k[0], p.name, p.conn_id): count
for p in connected_connections
for k, count in p.outbound_commands_counter.counts.iteritems()
},
labels=["command", "name", "conn_id"],
)
# number of updates received for each RDATA stream
inbound_rdata_count = metrics.register_counter(
"inbound_rdata_count",
labels=["stream_name"],
)