synapse-product/synapse/replication/tcp/handler.py
Erik Johnston 3eab76ad43
Don't relay REMOTE_SERVER_UP cmds to same conn. (#7352)
For direct TCP connections we need the master to relay REMOTE_SERVER_UP
commands to the other connections so that all instances get notified
about it. The old implementation just relayed to all connections,
assuming that sending back to the original sender of the command was
safe. This is not true for redis, where commands sent get echoed back to
the sender, which was causing master to effectively infinite loop
sending and then re-receiving REMOTE_SERVER_UP commands that it sent.

The fix is to ensure that we only relay to *other* connections and not
to the connection we received the notification from.

Fixes #7334.
2020-04-29 14:10:59 +01:00

538 lines
20 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2017 Vector Creations Ltd
# Copyright 2020 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Set,
Tuple,
TypeVar,
)
from prometheus_client import Counter
from twisted.internet.protocol import ReconnectingClientFactory
from synapse.metrics import LaterGauge
from synapse.replication.tcp.client import DirectTcpReplicationClientFactory
from synapse.replication.tcp.commands import (
ClearUserSyncsCommand,
Command,
FederationAckCommand,
InvalidateCacheCommand,
PositionCommand,
RdataCommand,
RemoteServerUpCommand,
RemovePusherCommand,
ReplicateCommand,
UserIpCommand,
UserSyncCommand,
)
from synapse.replication.tcp.protocol import AbstractConnection
from synapse.replication.tcp.streams import STREAMS_MAP, Stream
from synapse.util.async_helpers import Linearizer
logger = logging.getLogger(__name__)
# number of updates received for each RDATA stream
inbound_rdata_count = Counter(
"synapse_replication_tcp_protocol_inbound_rdata_count", "", ["stream_name"]
)
user_sync_counter = Counter("synapse_replication_tcp_resource_user_sync", "")
federation_ack_counter = Counter("synapse_replication_tcp_resource_federation_ack", "")
remove_pusher_counter = Counter("synapse_replication_tcp_resource_remove_pusher", "")
invalidate_cache_counter = Counter(
"synapse_replication_tcp_resource_invalidate_cache", ""
)
user_ip_cache_counter = Counter("synapse_replication_tcp_resource_user_ip_cache", "")
class ReplicationCommandHandler:
"""Handles incoming commands from replication as well as sending commands
back out to connections.
"""
def __init__(self, hs):
self._replication_data_handler = hs.get_replication_data_handler()
self._presence_handler = hs.get_presence_handler()
self._store = hs.get_datastore()
self._notifier = hs.get_notifier()
self._clock = hs.get_clock()
self._instance_id = hs.get_instance_id()
# Set of streams that we've caught up with.
self._streams_connected = set() # type: Set[str]
self._streams = {
stream.NAME: stream(hs) for stream in STREAMS_MAP.values()
} # type: Dict[str, Stream]
self._position_linearizer = Linearizer(
"replication_position", clock=self._clock
)
# Map of stream to batched updates. See RdataCommand for info on how
# batching works.
self._pending_batches = {} # type: Dict[str, List[Any]]
# The factory used to create connections.
self._factory = None # type: Optional[ReconnectingClientFactory]
# The currently connected connections.
self._connections = [] # type: List[AbstractConnection]
LaterGauge(
"synapse_replication_tcp_resource_total_connections",
"",
[],
lambda: len(self._connections),
)
self._is_master = hs.config.worker_app is None
self._federation_sender = None
if self._is_master and not hs.config.send_federation:
self._federation_sender = hs.get_federation_sender()
self._server_notices_sender = None
if self._is_master:
self._server_notices_sender = hs.get_server_notices_sender()
def start_replication(self, hs):
"""Helper method to start a replication connection to the remote server
using TCP.
"""
if hs.config.redis.redis_enabled:
from synapse.replication.tcp.redis import (
RedisDirectTcpReplicationClientFactory,
)
import txredisapi
logger.info(
"Connecting to redis (host=%r port=%r DBID=%r)",
hs.config.redis_host,
hs.config.redis_port,
hs.config.redis_dbid,
)
# We need two connections to redis, one for the subscription stream and
# one to send commands to (as you can't send further redis commands to a
# connection after SUBSCRIBE is called).
# First create the connection for sending commands.
outbound_redis_connection = txredisapi.lazyConnection(
host=hs.config.redis_host,
port=hs.config.redis_port,
dbid=hs.config.redis_dbid,
password=hs.config.redis.redis_password,
reconnect=True,
)
# Now create the factory/connection for the subscription stream.
self._factory = RedisDirectTcpReplicationClientFactory(
hs, outbound_redis_connection
)
hs.get_reactor().connectTCP(
hs.config.redis.redis_host, hs.config.redis.redis_port, self._factory,
)
else:
client_name = hs.config.worker_name
self._factory = DirectTcpReplicationClientFactory(hs, client_name, self)
host = hs.config.worker_replication_host
port = hs.config.worker_replication_port
hs.get_reactor().connectTCP(host, port, self._factory)
async def on_REPLICATE(self, conn: AbstractConnection, cmd: ReplicateCommand):
# We only want to announce positions by the writer of the streams.
# Currently this is just the master process.
if not self._is_master:
return
for stream_name, stream in self._streams.items():
current_token = stream.current_token()
self.send_command(PositionCommand(stream_name, current_token))
async def on_USER_SYNC(self, conn: AbstractConnection, cmd: UserSyncCommand):
user_sync_counter.inc()
if self._is_master:
await self._presence_handler.update_external_syncs_row(
cmd.instance_id, cmd.user_id, cmd.is_syncing, cmd.last_sync_ms
)
async def on_CLEAR_USER_SYNC(
self, conn: AbstractConnection, cmd: ClearUserSyncsCommand
):
if self._is_master:
await self._presence_handler.update_external_syncs_clear(cmd.instance_id)
async def on_FEDERATION_ACK(
self, conn: AbstractConnection, cmd: FederationAckCommand
):
federation_ack_counter.inc()
if self._federation_sender:
self._federation_sender.federation_ack(cmd.token)
async def on_REMOVE_PUSHER(
self, conn: AbstractConnection, cmd: RemovePusherCommand
):
remove_pusher_counter.inc()
if self._is_master:
await self._store.delete_pusher_by_app_id_pushkey_user_id(
app_id=cmd.app_id, pushkey=cmd.push_key, user_id=cmd.user_id
)
self._notifier.on_new_replication_data()
async def on_INVALIDATE_CACHE(
self, conn: AbstractConnection, cmd: InvalidateCacheCommand
):
invalidate_cache_counter.inc()
if self._is_master:
# We invalidate the cache locally, but then also stream that to other
# workers.
await self._store.invalidate_cache_and_stream(
cmd.cache_func, tuple(cmd.keys)
)
async def on_USER_IP(self, conn: AbstractConnection, cmd: UserIpCommand):
user_ip_cache_counter.inc()
if self._is_master:
await self._store.insert_client_ip(
cmd.user_id,
cmd.access_token,
cmd.ip,
cmd.user_agent,
cmd.device_id,
cmd.last_seen,
)
if self._server_notices_sender:
await self._server_notices_sender.on_user_ip(cmd.user_id)
async def on_RDATA(self, conn: AbstractConnection, cmd: RdataCommand):
stream_name = cmd.stream_name
inbound_rdata_count.labels(stream_name).inc()
try:
row = STREAMS_MAP[stream_name].parse_row(cmd.row)
except Exception:
logger.exception("Failed to parse RDATA: %r %r", stream_name, cmd.row)
raise
# We linearize here for two reasons:
# 1. so we don't try and concurrently handle multiple rows for the
# same stream, and
# 2. so we don't race with getting a POSITION command and fetching
# missing RDATA.
with await self._position_linearizer.queue(cmd.stream_name):
if stream_name not in self._streams_connected:
# If the stream isn't marked as connected then we haven't seen a
# `POSITION` command yet, and so we may have missed some rows.
# Let's drop the row for now, on the assumption we'll receive a
# `POSITION` soon and we'll catch up correctly then.
logger.warning(
"Discarding RDATA for unconnected stream %s -> %s",
stream_name,
cmd.token,
)
return
if cmd.token is None:
# I.e. this is part of a batch of updates for this stream (in
# which case batch until we get an update for the stream with a non
# None token).
self._pending_batches.setdefault(stream_name, []).append(row)
else:
# Check if this is the last of a batch of updates
rows = self._pending_batches.pop(stream_name, [])
rows.append(row)
await self.on_rdata(stream_name, cmd.token, rows)
async def on_rdata(self, stream_name: str, token: int, rows: list):
"""Called to handle a batch of replication data with a given stream token.
Args:
stream_name: name of the replication stream for this batch of rows
token: stream token for this batch of rows
rows: a list of Stream.ROW_TYPE objects as returned by
Stream.parse_row.
"""
logger.debug("Received rdata %s -> %s", stream_name, token)
await self._replication_data_handler.on_rdata(stream_name, token, rows)
async def on_POSITION(self, conn: AbstractConnection, cmd: PositionCommand):
stream = self._streams.get(cmd.stream_name)
if not stream:
logger.error("Got POSITION for unknown stream: %s", cmd.stream_name)
return
# We protect catching up with a linearizer in case the replication
# connection reconnects under us.
with await self._position_linearizer.queue(cmd.stream_name):
# We're about to go and catch up with the stream, so remove from set
# of connected streams.
self._streams_connected.discard(cmd.stream_name)
# We clear the pending batches for the stream as the fetching of the
# missing updates below will fetch all rows in the batch.
self._pending_batches.pop(cmd.stream_name, [])
# Find where we previously streamed up to.
current_token = self._replication_data_handler.get_streams_to_replicate().get(
cmd.stream_name
)
if current_token is None:
logger.warning(
"Got POSITION for stream we're not subscribed to: %s",
cmd.stream_name,
)
return
# If the position token matches our current token then we're up to
# date and there's nothing to do. Otherwise, fetch all updates
# between then and now.
missing_updates = cmd.token != current_token
while missing_updates:
(
updates,
current_token,
missing_updates,
) = await stream.get_updates_since(current_token, cmd.token)
# TODO: add some tests for this
# Some streams return multiple rows with the same stream IDs,
# which need to be processed in batches.
for token, rows in _batch_updates(updates):
await self.on_rdata(
cmd.stream_name, token, [stream.parse_row(row) for row in rows],
)
# We've now caught up to position sent to us, notify handler.
await self._replication_data_handler.on_position(cmd.stream_name, cmd.token)
self._streams_connected.add(cmd.stream_name)
async def on_REMOTE_SERVER_UP(
self, conn: AbstractConnection, cmd: RemoteServerUpCommand
):
""""Called when get a new REMOTE_SERVER_UP command."""
self._replication_data_handler.on_remote_server_up(cmd.data)
self._notifier.notify_remote_server_up(cmd.data)
# We relay to all other connections to ensure every instance gets the
# notification.
#
# When configured to use redis we'll always only have one connection and
# so this is a no-op (all instances will have already received the same
# REMOTE_SERVER_UP command).
#
# For direct TCP connections this will relay to all other connections
# connected to us. When on master this will correctly fan out to all
# other direct TCP clients and on workers there'll only be the one
# connection to master.
#
# (The logic here should also be sound if we have a mix of Redis and
# direct TCP connections so long as there is only one traffic route
# between two instances, but that is not currently supported).
self.send_command(cmd, ignore_conn=conn)
def new_connection(self, connection: AbstractConnection):
"""Called when we have a new connection.
"""
self._connections.append(connection)
# If we are connected to replication as a client (rather than a server)
# we need to reset the reconnection delay on the client factory (which
# is used to do exponential back off when the connection drops).
#
# Ideally we would reset the delay when we've "fully established" the
# connection (for some definition thereof) to stop us from tightlooping
# on reconnection if something fails after this point and we drop the
# connection. Unfortunately, we don't really have a better definition of
# "fully established" than the connection being established.
if self._factory:
self._factory.resetDelay()
# Tell the other end if we have any users currently syncing.
currently_syncing = (
self._presence_handler.get_currently_syncing_users_for_replication()
)
now = self._clock.time_msec()
for user_id in currently_syncing:
connection.send_command(
UserSyncCommand(self._instance_id, user_id, True, now)
)
def lost_connection(self, connection: AbstractConnection):
"""Called when a connection is closed/lost.
"""
try:
self._connections.remove(connection)
except ValueError:
pass
def connected(self) -> bool:
"""Do we have any replication connections open?
Is used by e.g. `ReplicationStreamer` to no-op if nothing is connected.
"""
return bool(self._connections)
def send_command(
self, cmd: Command, ignore_conn: Optional[AbstractConnection] = None
):
"""Send a command to all connected connections.
Args:
cmd
ignore_conn: If set don't send command to the given connection.
Used when relaying commands from one connection to all others.
"""
if self._connections:
for connection in self._connections:
if connection == ignore_conn:
continue
try:
connection.send_command(cmd)
except Exception:
# We probably want to catch some types of exceptions here
# and log them as warnings (e.g. connection gone), but I
# can't find what those exception types they would be.
logger.exception(
"Failed to write command %s to connection %s",
cmd.NAME,
connection,
)
else:
logger.warning("Dropping command as not connected: %r", cmd.NAME)
def send_federation_ack(self, token: int):
"""Ack data for the federation stream. This allows the master to drop
data stored purely in memory.
"""
self.send_command(FederationAckCommand(token))
def send_user_sync(
self, instance_id: str, user_id: str, is_syncing: bool, last_sync_ms: int
):
"""Poke the master that a user has started/stopped syncing.
"""
self.send_command(
UserSyncCommand(instance_id, user_id, is_syncing, last_sync_ms)
)
def send_remove_pusher(self, app_id: str, push_key: str, user_id: str):
"""Poke the master to remove a pusher for a user
"""
cmd = RemovePusherCommand(app_id, push_key, user_id)
self.send_command(cmd)
def send_invalidate_cache(self, cache_func: Callable, keys: tuple):
"""Poke the master to invalidate a cache.
"""
cmd = InvalidateCacheCommand(cache_func.__name__, keys)
self.send_command(cmd)
def send_user_ip(
self,
user_id: str,
access_token: str,
ip: str,
user_agent: str,
device_id: str,
last_seen: int,
):
"""Tell the master that the user made a request.
"""
cmd = UserIpCommand(user_id, access_token, ip, user_agent, device_id, last_seen)
self.send_command(cmd)
def send_remote_server_up(self, server: str):
self.send_command(RemoteServerUpCommand(server))
def stream_update(self, stream_name: str, token: str, data: Any):
"""Called when a new update is available to stream to clients.
We need to check if the client is interested in the stream or not
"""
self.send_command(RdataCommand(stream_name, token, data))
UpdateToken = TypeVar("UpdateToken")
UpdateRow = TypeVar("UpdateRow")
def _batch_updates(
updates: Iterable[Tuple[UpdateToken, UpdateRow]]
) -> Iterator[Tuple[UpdateToken, List[UpdateRow]]]:
"""Collect stream updates with the same token together
Given a series of updates returned by Stream.get_updates_since(), collects
the updates which share the same stream_id together.
For example:
[(1, a), (1, b), (2, c), (3, d), (3, e)]
becomes:
[
(1, [a, b]),
(2, [c]),
(3, [d, e]),
]
"""
update_iter = iter(updates)
first_update = next(update_iter, None)
if first_update is None:
# empty input
return
current_batch_token = first_update[0]
current_batch = [first_update[1]]
for token, row in update_iter:
if token != current_batch_token:
# different token to the previous row: flush the previous
# batch and start anew
yield current_batch_token, current_batch
current_batch_token = token
current_batch = []
current_batch.append(row)
# flush the final batch
yield current_batch_token, current_batch