mirror of
https://git.anonymousland.org/anonymousland/synapse-product.git
synced 2024-12-12 04:44:18 -05:00
d9cb658c78
Mostly this involves decorating a few Deferred declarations with extra type hints. We wrap the types in quotes to avoid runtime errors when running against older versions of Twisted that don't have generics on Deferred.
341 lines
12 KiB
Python
341 lines
12 KiB
Python
# Copyright 2015, 2016 OpenMarket Ltd
|
|
# Copyright 2018 New Vector Ltd
|
|
# Copyright 2020 The Matrix.org Foundation C.I.C.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import enum
|
|
import threading
|
|
from typing import (
|
|
Callable,
|
|
Generic,
|
|
Iterable,
|
|
MutableMapping,
|
|
Optional,
|
|
TypeVar,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from prometheus_client import Gauge
|
|
|
|
from twisted.internet import defer
|
|
from twisted.python import failure
|
|
|
|
from synapse.util.async_helpers import ObservableDeferred
|
|
from synapse.util.caches.lrucache import LruCache
|
|
from synapse.util.caches.treecache import TreeCache, iterate_tree_cache_entry
|
|
|
|
cache_pending_metric = Gauge(
|
|
"synapse_util_caches_cache_pending",
|
|
"Number of lookups currently pending for this cache",
|
|
["name"],
|
|
)
|
|
|
|
T = TypeVar("T")
|
|
KT = TypeVar("KT")
|
|
VT = TypeVar("VT")
|
|
|
|
|
|
class _Sentinel(enum.Enum):
|
|
# defining a sentinel in this way allows mypy to correctly handle the
|
|
# type of a dictionary lookup.
|
|
sentinel = object()
|
|
|
|
|
|
class DeferredCache(Generic[KT, VT]):
|
|
"""Wraps an LruCache, adding support for Deferred results.
|
|
|
|
It expects that each entry added with set() will be a Deferred; likewise get()
|
|
will return a Deferred.
|
|
"""
|
|
|
|
__slots__ = (
|
|
"cache",
|
|
"thread",
|
|
"_pending_deferred_cache",
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
max_entries: int = 1000,
|
|
tree: bool = False,
|
|
iterable: bool = False,
|
|
apply_cache_factor_from_config: bool = True,
|
|
):
|
|
"""
|
|
Args:
|
|
name: The name of the cache
|
|
max_entries: Maximum amount of entries that the cache will hold
|
|
keylen: The length of the tuple used as the cache key. Ignored unless
|
|
`tree` is True.
|
|
tree: Use a TreeCache instead of a dict as the underlying cache type
|
|
iterable: If True, count each item in the cached object as an entry,
|
|
rather than each cached object
|
|
apply_cache_factor_from_config: Whether cache factors specified in the
|
|
config file affect `max_entries`
|
|
"""
|
|
cache_type = TreeCache if tree else dict
|
|
|
|
# _pending_deferred_cache maps from the key value to a `CacheEntry` object.
|
|
self._pending_deferred_cache: Union[
|
|
TreeCache, "MutableMapping[KT, CacheEntry]"
|
|
] = cache_type()
|
|
|
|
def metrics_cb():
|
|
cache_pending_metric.labels(name).set(len(self._pending_deferred_cache))
|
|
|
|
# cache is used for completed results and maps to the result itself, rather than
|
|
# a Deferred.
|
|
self.cache: LruCache[KT, VT] = LruCache(
|
|
max_size=max_entries,
|
|
cache_name=name,
|
|
cache_type=cache_type,
|
|
size_callback=(lambda d: len(d) or 1) if iterable else None,
|
|
metrics_collection_callback=metrics_cb,
|
|
apply_cache_factor_from_config=apply_cache_factor_from_config,
|
|
)
|
|
|
|
self.thread: Optional[threading.Thread] = None
|
|
|
|
@property
|
|
def max_entries(self):
|
|
return self.cache.max_size
|
|
|
|
def check_thread(self):
|
|
expected_thread = self.thread
|
|
if expected_thread is None:
|
|
self.thread = threading.current_thread()
|
|
else:
|
|
if expected_thread is not threading.current_thread():
|
|
raise ValueError(
|
|
"Cache objects can only be accessed from the main thread"
|
|
)
|
|
|
|
def get(
|
|
self,
|
|
key: KT,
|
|
callback: Optional[Callable[[], None]] = None,
|
|
update_metrics: bool = True,
|
|
) -> defer.Deferred:
|
|
"""Looks the key up in the caches.
|
|
|
|
For symmetry with set(), this method does *not* follow the synapse logcontext
|
|
rules: the logcontext will not be cleared on return, and the Deferred will run
|
|
its callbacks in the sentinel context. In other words: wrap the result with
|
|
make_deferred_yieldable() before `await`ing it.
|
|
|
|
Args:
|
|
key:
|
|
callback: Gets called when the entry in the cache is invalidated
|
|
update_metrics (bool): whether to update the cache hit rate metrics
|
|
|
|
Returns:
|
|
A Deferred which completes with the result. Note that this may later fail
|
|
if there is an ongoing set() operation which later completes with a failure.
|
|
|
|
Raises:
|
|
KeyError if the key is not found in the cache
|
|
"""
|
|
callbacks = [callback] if callback else []
|
|
val = self._pending_deferred_cache.get(key, _Sentinel.sentinel)
|
|
if val is not _Sentinel.sentinel:
|
|
val.callbacks.update(callbacks)
|
|
if update_metrics:
|
|
m = self.cache.metrics
|
|
assert m # we always have a name, so should always have metrics
|
|
m.inc_hits()
|
|
return val.deferred.observe()
|
|
|
|
val2 = self.cache.get(
|
|
key, _Sentinel.sentinel, callbacks=callbacks, update_metrics=update_metrics
|
|
)
|
|
if val2 is _Sentinel.sentinel:
|
|
raise KeyError()
|
|
else:
|
|
return defer.succeed(val2)
|
|
|
|
def get_immediate(
|
|
self, key: KT, default: T, update_metrics: bool = True
|
|
) -> Union[VT, T]:
|
|
"""If we have a *completed* cached value, return it."""
|
|
return self.cache.get(key, default, update_metrics=update_metrics)
|
|
|
|
def set(
|
|
self,
|
|
key: KT,
|
|
value: "defer.Deferred[VT]",
|
|
callback: Optional[Callable[[], None]] = None,
|
|
) -> defer.Deferred:
|
|
"""Adds a new entry to the cache (or updates an existing one).
|
|
|
|
The given `value` *must* be a Deferred.
|
|
|
|
First any existing entry for the same key is invalidated. Then a new entry
|
|
is added to the cache for the given key.
|
|
|
|
Until the `value` completes, calls to `get()` for the key will also result in an
|
|
incomplete Deferred, which will ultimately complete with the same result as
|
|
`value`.
|
|
|
|
If `value` completes successfully, subsequent calls to `get()` will then return
|
|
a completed deferred with the same result. If it *fails*, the cache is
|
|
invalidated and subequent calls to `get()` will raise a KeyError.
|
|
|
|
If another call to `set()` happens before `value` completes, then (a) any
|
|
invalidation callbacks registered in the interim will be called, (b) any
|
|
`get()`s in the interim will continue to complete with the result from the
|
|
*original* `value`, (c) any future calls to `get()` will complete with the
|
|
result from the *new* `value`.
|
|
|
|
It is expected that `value` does *not* follow the synapse logcontext rules - ie,
|
|
if it is incomplete, it runs its callbacks in the sentinel context.
|
|
|
|
Args:
|
|
key: Key to be set
|
|
value: a deferred which will complete with a result to add to the cache
|
|
callback: An optional callback to be called when the entry is invalidated
|
|
"""
|
|
if not isinstance(value, defer.Deferred):
|
|
raise TypeError("not a Deferred")
|
|
|
|
callbacks = [callback] if callback else []
|
|
self.check_thread()
|
|
|
|
existing_entry = self._pending_deferred_cache.pop(key, None)
|
|
if existing_entry:
|
|
existing_entry.invalidate()
|
|
|
|
# XXX: why don't we invalidate the entry in `self.cache` yet?
|
|
|
|
# we can save a whole load of effort if the deferred is ready.
|
|
if value.called:
|
|
result = value.result
|
|
if not isinstance(result, failure.Failure):
|
|
self.cache.set(key, cast(VT, result), callbacks)
|
|
return value
|
|
|
|
# otherwise, we'll add an entry to the _pending_deferred_cache for now,
|
|
# and add callbacks to add it to the cache properly later.
|
|
|
|
observable = ObservableDeferred(value, consumeErrors=True)
|
|
observer = observable.observe()
|
|
entry = CacheEntry(deferred=observable, callbacks=callbacks)
|
|
|
|
self._pending_deferred_cache[key] = entry
|
|
|
|
def compare_and_pop():
|
|
"""Check if our entry is still the one in _pending_deferred_cache, and
|
|
if so, pop it.
|
|
|
|
Returns true if the entries matched.
|
|
"""
|
|
existing_entry = self._pending_deferred_cache.pop(key, None)
|
|
if existing_entry is entry:
|
|
return True
|
|
|
|
# oops, the _pending_deferred_cache has been updated since
|
|
# we started our query, so we are out of date.
|
|
#
|
|
# Better put back whatever we took out. (We do it this way
|
|
# round, rather than peeking into the _pending_deferred_cache
|
|
# and then removing on a match, to make the common case faster)
|
|
if existing_entry is not None:
|
|
self._pending_deferred_cache[key] = existing_entry
|
|
|
|
return False
|
|
|
|
def cb(result):
|
|
if compare_and_pop():
|
|
self.cache.set(key, result, entry.callbacks)
|
|
else:
|
|
# we're not going to put this entry into the cache, so need
|
|
# to make sure that the invalidation callbacks are called.
|
|
# That was probably done when _pending_deferred_cache was
|
|
# updated, but it's possible that `set` was called without
|
|
# `invalidate` being previously called, in which case it may
|
|
# not have been. Either way, let's double-check now.
|
|
entry.invalidate()
|
|
|
|
def eb(_fail):
|
|
compare_and_pop()
|
|
entry.invalidate()
|
|
|
|
# once the deferred completes, we can move the entry from the
|
|
# _pending_deferred_cache to the real cache.
|
|
#
|
|
observer.addCallbacks(cb, eb)
|
|
|
|
# we return a new Deferred which will be called before any subsequent observers.
|
|
return observable.observe()
|
|
|
|
def prefill(
|
|
self, key: KT, value: VT, callback: Optional[Callable[[], None]] = None
|
|
):
|
|
callbacks = [callback] if callback else []
|
|
self.cache.set(key, value, callbacks=callbacks)
|
|
|
|
def invalidate(self, key):
|
|
"""Delete a key, or tree of entries
|
|
|
|
If the cache is backed by a regular dict, then "key" must be of
|
|
the right type for this cache
|
|
|
|
If the cache is backed by a TreeCache, then "key" must be a tuple, but
|
|
may be of lower cardinality than the TreeCache - in which case the whole
|
|
subtree is deleted.
|
|
"""
|
|
self.check_thread()
|
|
self.cache.del_multi(key)
|
|
|
|
# if we have a pending lookup for this key, remove it from the
|
|
# _pending_deferred_cache, which will (a) stop it being returned
|
|
# for future queries and (b) stop it being persisted as a proper entry
|
|
# in self.cache.
|
|
entry = self._pending_deferred_cache.pop(key, None)
|
|
|
|
# run the invalidation callbacks now, rather than waiting for the
|
|
# deferred to resolve.
|
|
if entry:
|
|
# _pending_deferred_cache.pop should either return a CacheEntry, or, in the
|
|
# case of a TreeCache, a dict of keys to cache entries. Either way calling
|
|
# iterate_tree_cache_entry on it will do the right thing.
|
|
for entry in iterate_tree_cache_entry(entry):
|
|
entry.invalidate()
|
|
|
|
def invalidate_all(self):
|
|
self.check_thread()
|
|
self.cache.clear()
|
|
for entry in self._pending_deferred_cache.values():
|
|
entry.invalidate()
|
|
self._pending_deferred_cache.clear()
|
|
|
|
|
|
class CacheEntry:
|
|
__slots__ = ["deferred", "callbacks", "invalidated"]
|
|
|
|
def __init__(
|
|
self, deferred: ObservableDeferred, callbacks: Iterable[Callable[[], None]]
|
|
):
|
|
self.deferred = deferred
|
|
self.callbacks = set(callbacks)
|
|
self.invalidated = False
|
|
|
|
def invalidate(self):
|
|
if not self.invalidated:
|
|
self.invalidated = True
|
|
for callback in self.callbacks:
|
|
callback()
|
|
self.callbacks.clear()
|