# Copyright 2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import codecs import itertools import logging import re from typing import TYPE_CHECKING, Dict, Generator, Iterable, Optional, Set, Union if TYPE_CHECKING: from lxml import etree logger = logging.getLogger(__name__) _charset_match = re.compile( rb'<\s*meta[^>]*charset\s*=\s*"?([a-z0-9_-]+)"?', flags=re.I ) _xml_encoding_match = re.compile( rb'\s*<\s*\?\s*xml[^>]*encoding="([a-z0-9_-]+)"', flags=re.I ) _content_type_match = re.compile(r'.*; *charset="?(.*?)"?(;|$)', flags=re.I) # Certain elements aren't meant for display. ARIA_ROLES_TO_IGNORE = {"directory", "menu", "menubar", "toolbar"} def _normalise_encoding(encoding: str) -> Optional[str]: """Use the Python codec's name as the normalised entry.""" try: return codecs.lookup(encoding).name except LookupError: return None def _get_html_media_encodings( body: bytes, content_type: Optional[str] ) -> Iterable[str]: """ Get potential encoding of the body based on the (presumably) HTML body or the content-type header. The precedence used for finding a character encoding is: 1. tag with a charset declared. 2. The XML document's character encoding attribute. 3. The Content-Type header. 4. Fallback to utf-8. 5. Fallback to windows-1252. This roughly follows the algorithm used by BeautifulSoup's bs4.dammit.EncodingDetector. Args: body: The HTML document, as bytes. content_type: The Content-Type header. Returns: The character encoding of the body, as a string. """ # There's no point in returning an encoding more than once. attempted_encodings: Set[str] = set() # Limit searches to the first 1kb, since it ought to be at the top. body_start = body[:1024] # Check if it has an encoding set in a meta tag. match = _charset_match.search(body_start) if match: encoding = _normalise_encoding(match.group(1).decode("ascii")) if encoding: attempted_encodings.add(encoding) yield encoding # TODO Support # Check if it has an XML document with an encoding. match = _xml_encoding_match.match(body_start) if match: encoding = _normalise_encoding(match.group(1).decode("ascii")) if encoding and encoding not in attempted_encodings: attempted_encodings.add(encoding) yield encoding # Check the HTTP Content-Type header for a character set. if content_type: content_match = _content_type_match.match(content_type) if content_match: encoding = _normalise_encoding(content_match.group(1)) if encoding and encoding not in attempted_encodings: attempted_encodings.add(encoding) yield encoding # Finally, fallback to UTF-8, then windows-1252. for fallback in ("utf-8", "cp1252"): if fallback not in attempted_encodings: yield fallback def decode_body( body: bytes, uri: str, content_type: Optional[str] = None ) -> Optional["etree.Element"]: """ This uses lxml to parse the HTML document. Args: body: The HTML document, as bytes. uri: The URI used to download the body. content_type: The Content-Type header. Returns: The parsed HTML body, or None if an error occurred during processed. """ # If there's no body, nothing useful is going to be found. if not body: return None # The idea here is that multiple encodings are tried until one works. # Unfortunately the result is never used and then LXML will decode the string # again with the found encoding. for encoding in _get_html_media_encodings(body, content_type): try: body.decode(encoding) except Exception: pass else: break else: logger.warning("Unable to decode HTML body for %s", uri) return None from lxml import etree # Create an HTML parser. parser = etree.HTMLParser(recover=True, encoding=encoding) # Attempt to parse the body. Returns None if the body was successfully # parsed, but no tree was found. return etree.fromstring(body, parser) def parse_html_to_open_graph(tree: "etree.Element") -> Dict[str, Optional[str]]: """ Parse the HTML document into an Open Graph response. This uses lxml to search the HTML document for Open Graph data (or synthesizes it from the document). Args: tree: The parsed HTML document. Returns: The Open Graph response as a dictionary. """ # if we see any image URLs in the OG response, then spider them # (although the client could choose to do this by asking for previews of those # URLs to avoid DoSing the server) # "og:type" : "video", # "og:url" : "https://www.youtube.com/watch?v=LXDBoHyjmtw", # "og:site_name" : "YouTube", # "og:video:type" : "application/x-shockwave-flash", # "og:description" : "Fun stuff happening here", # "og:title" : "RemoteJam - Matrix team hack for Disrupt Europe Hackathon", # "og:image" : "https://i.ytimg.com/vi/LXDBoHyjmtw/maxresdefault.jpg", # "og:video:url" : "http://www.youtube.com/v/LXDBoHyjmtw?version=3&autohide=1", # "og:video:width" : "1280" # "og:video:height" : "720", # "og:video:secure_url": "https://www.youtube.com/v/LXDBoHyjmtw?version=3", og: Dict[str, Optional[str]] = {} for tag in tree.xpath( "//*/meta[starts-with(@property, 'og:')][@content][not(@content='')]" ): # if we've got more than 50 tags, someone is taking the piss if len(og) >= 50: logger.warning("Skipping OG for page with too many 'og:' tags") return {} og[tag.attrib["property"]] = tag.attrib["content"] # TODO: grab article: meta tags too, e.g.: # "article:publisher" : "https://www.facebook.com/thethudonline" /> # "article:author" content="https://www.facebook.com/thethudonline" /> # "article:tag" content="baby" /> # "article:section" content="Breaking News" /> # "article:published_time" content="2016-03-31T19:58:24+00:00" /> # "article:modified_time" content="2016-04-01T18:31:53+00:00" /> if "og:title" not in og: # Attempt to find a title from the title tag, or the biggest header on the page. title = tree.xpath("((//title)[1] | (//h1)[1] | (//h2)[1] | (//h3)[1])/text()") if title: og["og:title"] = title[0].strip() else: og["og:title"] = None if "og:image" not in og: meta_image = tree.xpath( "//*/meta[translate(@itemprop, 'IMAGE', 'image')='image'][not(@content='')]/@content[1]" ) # If a meta image is found, use it. if meta_image: og["og:image"] = meta_image[0] else: # Try to find images which are larger than 10px by 10px. # # TODO: consider inlined CSS styles as well as width & height attribs images = tree.xpath("//img[@src][number(@width)>10][number(@height)>10]") images = sorted( images, key=lambda i: ( -1 * float(i.attrib["width"]) * float(i.attrib["height"]) ), ) # If no images were found, try to find *any* images. if not images: images = tree.xpath("//img[@src][1]") if images: og["og:image"] = images[0].attrib["src"] # Finally, fallback to the favicon if nothing else. else: favicons = tree.xpath("//link[@href][contains(@rel, 'icon')]/@href[1]") if favicons: og["og:image"] = favicons[0] if "og:description" not in og: # Check the first meta description tag for content. meta_description = tree.xpath( "//*/meta[translate(@name, 'DESCRIPTION', 'description')='description'][not(@content='')]/@content[1]" ) # If a meta description is found with content, use it. if meta_description: og["og:description"] = meta_description[0] else: og["og:description"] = parse_html_description(tree) elif og["og:description"]: # This must be a non-empty string at this point. assert isinstance(og["og:description"], str) og["og:description"] = summarize_paragraphs([og["og:description"]]) # TODO: delete the url downloads to stop diskfilling, # as we only ever cared about its OG return og def parse_html_description(tree: "etree.Element") -> Optional[str]: """ Calculate a text description based on an HTML document. Grabs any text nodes which are inside the tag, unless they are within an HTML5 semantic markup tag (
,