Signed-off-by: Andrew Doh <andrewddo@gmail.com>
Co-authored-by: Patrick Cloke <clokep@users.noreply.github.com>
Co-authored-by: Andrew Morgan <andrewm@element.io>
Co-authored-by: Brendan Abolivier <babolivier@matrix.org>
Avoid blocking on full state in `_resolve_state_at_missing_prevs` and
return a new flag indicating whether the resolved state is partial.
Thread that flag around so that it makes it into the event context.
Co-authored-by: Richard van der Hoff <1389908+richvdh@users.noreply.github.com>
Whenever we want to persist an event, we first compute an event context,
which includes the state at the event and a flag indicating whether the
state is partial. After a lot of processing, we finally try to store the
event in the database, which can fail for partial state events when the
containing room has been un-partial stated in the meantime.
We detect the race as a foreign key constraint failure in the data store
layer and turn it into a special `PartialStateConflictError` exception,
which makes its way up to the method in which we computed the event
context.
To make things difficult, the exception needs to cross a replication
request: `/fed_send_events` for events coming over federation and
`/send_event` for events from clients. We transport the
`PartialStateConflictError` as a `409 Conflict` over replication and
turn `409`s back into `PartialStateConflictError`s on the worker making
the request.
All client events go through
`EventCreationHandler.handle_new_client_event`, which is called in
*a lot* of places. Instead of trying to update all the code which
creates client events, we turn the `PartialStateConflictError` into a
`429 Too Many Requests` in
`EventCreationHandler.handle_new_client_event` and hope that clients
take it as a hint to retry their request.
On the federation event side, there are 7 places which compute event
contexts. 4 of them use outlier event contexts:
`FederationEventHandler._auth_and_persist_outliers_inner`,
`FederationHandler.do_knock`, `FederationHandler.on_invite_request` and
`FederationHandler.do_remotely_reject_invite`. These events won't have
the partial state flag, so we do not need to do anything for then.
The remaining 3 paths which create events are
`FederationEventHandler.process_remote_join`,
`FederationEventHandler.on_send_membership_event` and
`FederationEventHandler._process_received_pdu`.
We can't experience the race in `process_remote_join`, unless we're
handling an additional join into a partial state room, which currently
blocks, so we make no attempt to handle it correctly.
`on_send_membership_event` is only called by
`FederationServer._on_send_membership_event`, so we catch the
`PartialStateConflictError` there and retry just once.
`_process_received_pdu` is called by `on_receive_pdu` for incoming
events and `_process_pulled_event` for backfill. The latter should never
try to persist partial state events, so we ignore it. We catch the
`PartialStateConflictError` in `on_receive_pdu` and retry just once.
Refering to the graph of code paths in
https://github.com/matrix-org/synapse/issues/12988#issuecomment-1156857648
may make the above make more sense.
Signed-off-by: Sean Quah <seanq@matrix.org>
Instead, use the `room_version` property of the event we're validating.
The `room_version` was originally added as a parameter somewhere around #4482,
but really it's been redundant since #6875 added a `room_version` field to `EventBase`.
Currently, we try to pull the event corresponding to a sync token from the database. However, when
we fetch redaction events, we check the target of that redaction (because we aren't allowed to send
redactions to clients without validating them). So, if the sync token points to a redaction of an event
that we don't have, we have a problem.
It turns out we don't really need that event, and can just work with its ID and metadata, which
sidesteps the whole problem.
Parse the `m.relates_to` event content field (which describes relations)
in a single place, this is used during:
* Event persistence.
* Validation of the Client-Server API.
* Fetching bundled aggregations.
* Processing of push rules.
Each of these separately implement the logic and each made slightly
different assumptions about what was valid. Some had minor / potential
bugs.
Refactor how the `EventContext` class works, with the intention of reducing the amount of state we fetch from the DB during event processing.
The idea here is to get rid of the cached `current_state_ids` and `prev_state_ids` that live in the `EventContext`, and instead defer straight to the database (and its caching).
One change that may have a noticeable effect is that we now no longer prefill the `get_current_state_ids` cache on a state change. However, that query is relatively light, since its just a case of reading a table from the DB (unlike fetching state at an event which is more heavyweight). For deployments with workers this cache isn't even used.
Part of #12684
Refactor and convert `Linearizer` to async. This makes a `Linearizer`
cancellation bug easier to fix.
Also refactor to use an async context manager, which eliminates an
unlikely footgun where code that doesn't immediately use the context
manager could forget to release the lock.
Signed-off-by: Sean Quah <seanq@element.io>
Follow-up to https://github.com/matrix-org/synapse/pull/12083
Since we are now using the new `state_event_ids` parameter to do all of the heavy lifting.
We can remove any spots where we plumbed `auth_event_ids` just for MSC2716 things in
https://github.com/matrix-org/synapse/pull/9247/files.
Removing `auth_event_ids` from following functions:
- `create_and_send_nonmember_event`
- `_local_membership_update`
- `update_membership`
- `update_membership_locked`
The unstable identifiers are still supported if the experimental configuration
flag is enabled. The unstable identifiers will be removed in a future release.
When we get a partial_state response from send_join, store information in the
database about it:
* store a record about the room as a whole having partial state, and stash the
list of member servers too.
* flag the join event itself as having partial state
* also, for any new events whose prev-events are partial-stated, note that
they will *also* be partial-stated.
We don't yet make any attempt to interpret this data, so API calls (and a bunch
of other things) are just going to get incorrect data.
* fix incorrect unwrapFirstError import
this was being imported from the wrong place
* Refactor `concurrently_execute` to use `yieldable_gather_results`
* Improve exception handling in `yieldable_gather_results`
Try to avoid swallowing so many stack traces.
* mark unwrapFirstError deprecated
* changelog
This makes the serialization of events synchronous (and it no
longer access the database), but we must manually calculate and
provide the bundled aggregations.
Overall this should cause no change in behavior, but is prep work
for other improvements.
Due to updates to MSC2675 this includes a few fixes:
* Include bundled aggregations for /sync.
* Do not include bundled aggregations for /initialSync and /events.
* Do not bundle aggregations for state events.
* Clarifies comments and variable names.
Adds validation to the Client-Server API to ensure that
the potential thread head does not relate to another event
already. This results in not allowing a thread to "fork" into
other threads.
If the target event is unknown for some reason (maybe it isn't
visible to your homeserver), but is the target of other events
it is assumed that the thread can be created from it. Otherwise,
it is rejected as an unknown event.