This is *not* ready for production yet. Caveats:
1. We should write some tests...
2. The stream token that we use for events can get stalled at the minimum position of all writers. This means that new events may not be processed and e.g. sent down sync streams if a writer isn't writing or is slow.
The idea here is that we pass the `max_stream_id` to everything, and only use the stream ID of the particular event to figure out *when* the max stream position has caught up to the event and we can notify people about it.
This is to maintain the distinction between the position of an item in the stream (i.e. event A has stream ID 513) and a token that can be used to partition the stream (i.e. give me all events after stream ID 352). This distinction becomes important when the tokens are more complicated than a single number, which they will be once we start tracking the position of multiple writers in the tokens.
The valid operations here are:
1. Is a position before or after a token
2. Fetching all events between two tokens
3. Merging multiple tokens to get the "max", i.e. `C = max(A, B)` means that for all positions P where P is before A *or* before B, then P is before C.
Future PR will change the token type to a dedicated type.
`pusher_pool.on_new_notifications` expected a min and max stream ID, however that was not what we were passing in. Instead, let's just pass it the current max stream ID and have it track the last stream ID it got passed.
I believe that it mostly worked as we called the function for every event. However, it would break for events that got persisted out of order, i.e, that were persisted but the max stream ID wasn't incremented as not all preceding events had finished persisting, and push for that event would be delayed until another event got pushed to the effected users.
This is *not* ready for production yet. Caveats:
1. We should write some tests...
2. The stream token that we use for events can get stalled at the minimum position of all writers. This means that new events may not be processed and e.g. sent down sync streams if a writer isn't writing or is slow.
Small cleanup PR.
* Removed the unused `is_guest` argument
* Added a safeguard to a (currently) impossible code path, fixing static checking at the same time.
If we got an error persisting an event, we would try to remove the push actions
asynchronously, which would lead to a 'Re-starting finished log context'
warning.
I don't think there's any need for this to be asynchronous.
Fixes#2181.
The basic premise is that, when we
fail to reject an invite via the remote server, we can generate our own
out-of-band leave event and persist it as an outlier, so that we have something
to send to the client.
While working on https://github.com/matrix-org/synapse/issues/5665 I found myself digging into the `Ratelimiter` class and seeing that it was both:
* Rather undocumented, and
* causing a *lot* of config checks
This PR attempts to refactor and comment the `Ratelimiter` class, as well as encourage config file accesses to only be done at instantiation.
Best to be reviewed commit-by-commit.
The idea here is that if an instance persists an event via the replication HTTP API it can return before we receive that event over replication, which can lead to races where code assumes that persisting an event immediately updates various caches (e.g. current state of the room).
Most of Synapse doesn't hit such races, so we don't do the waiting automagically, instead we do so where necessary to avoid unnecessary delays. We may decide to change our minds here if it turns out there are a lot of subtle races going on.
People probably want to look at this commit by commit.
... and set it everywhere it's called.
while we're here, rename it for consistency with `check_user_in_room` (and to
help check that I haven't missed any instances)
These are easier to work with than the strings and we normally have one around.
This fixes `FederationHander._persist_auth_tree` which was passing a
RoomVersion object into event_auth.check instead of a string.
Implement part [MSC2228](https://github.com/matrix-org/matrix-doc/pull/2228). The parts that differ are:
* the feature is hidden behind a configuration flag (`enable_ephemeral_messages`)
* self-destruction doesn't happen for state events
* only implement support for the `m.self_destruct_after` field (not the `m.self_destruct` one)
* doesn't send synthetic redactions to clients because for this specific case we consider the clients to be able to destroy an event themselves, instead we just censor it (by pruning its JSON) in the database
Purge jobs don't delete the latest event in a room in order to keep the forward extremity and not break the room. On the other hand, get_state_events, when given an at_token argument calls filter_events_for_client to know if the user can see the event that matches that (sync) token. That function uses the retention policies of the events it's given to filter out those that are too old from a client's view.
Some clients, such as Riot, when loading a room, request the list of members for the latest sync token it knows about, and get confused to the point of refusing to send any message if the server tells it that it can't get that information. This can happen very easily with the message retention feature turned on and a room with low activity so that the last event sent becomes too old according to the room's retention policy.
An easy and clean fix for that issue is to discard the room's retention policies when retrieving state.
`None` is not a valid event id, so queuing up a database fetch for it seems
like a silly thing to do.
I considered making `get_event` return `None` if `event_id is None`, but then
its interaction with `allow_none` seemed uninituitive, and strong typing ftw.
Adds new config option `cleanup_extremities_with_dummy_events` which
periodically sends dummy events to rooms with more than 10 extremities.
THIS IS REALLY EXPERIMENTAL.
There are a number of instances where a server or admin may puppet a
user to join/leave rooms, which we don't want to fail if the user has
not consented to the privacy policy. We fix this by adding a check to
test if the requester has an associated access_token, which is used as a
proxy to answer the question of whether the action is being done on
behalf of a real request from the user.
The validator was being run on the EventBuilder objects, and so the
validator only checked a subset of fields. With the upcoming
EventBuilder refactor even fewer fields will be there to validate.
To get around this we split the validation into those that can be run
against an EventBuilder and those run against a fully fledged event.