The aim here is to make it easier to reason about when streams are limited and when they're not, by moving the logic into the database functions themselves. This should mean we can kill of `db_query_to_update_function` function.
* Ensure account data stream IDs are unique.
The account data stream is shared between three tables, and the maximum
allocated ID was tracked in a dedicated table. Updating the max ID
happened outside the transaction that allocated the ID, leading to a
race where if the server was restarted then the same ID could be
allocated but the max ID failed to be updated, leading it to be reused.
The ID generators have support for tracking across multiple tables, so
we may as well use that instead of a dedicated table.
* Fix bug in account data replication stream.
If the same stream ID was used in both global and room account data then
the getting updates for the replication stream would fail due to
`heapq.merge(..)` trying to compare a `str` with a `None`. (This is
because you'd have two rows like `(534, '!room')` and `(534, None)` from
the room and global account data tables).
Fix is just to order by stream ID, since we don't rely on the ordering
beyond that. The bug where stream IDs can be reused should be fixed now,
so this case shouldn't happen going forward.
Fixes#7617
The query keeps showing up in my slow query log.
This changes the plan under the top-level Sort node from
```
WindowAgg (cost=280335.88..292963.15 rows=561212 width=80) (actual time=138.651..160.562 rows=27112 loops=1)
-> Sort (cost=280335.88..281738.91 rows=561212 width=84) (actual time=138.597..140.622 rows=27112 loops=1)
Sort Key: state_groups_state.type, state_groups_state.state_key, state_groups_state.state_group
Sort Method: quicksort Memory: 4581kB
-> Nested Loop (cost=2.83..226745.22 rows=561212 width=84) (actual time=21.548..47.657 rows=27112 loops=1)
-> HashAggregate (cost=2.27..3.28 rows=101 width=8) (actual time=21.526..21.535 rows=20 loops=1)
Group Key: state.state_group
-> CTE Scan on state (cost=0.00..2.02 rows=101 width=8) (actual time=21.280..21.493 rows=20 loops=1)
-> Index Scan using state_groups_state_type_idx on state_groups_state (cost=0.56..2189.40 rows=5557 width=84) (actual time=0.005..0.991 rows=1356 loops=20)
Index Cond: (state_group = state.state_group)
```
to
```
Nested Loop (cost=2.83..226745.22 rows=561212 width=84) (actual time=24.194..52.834 rows=27112 loops=1)
-> HashAggregate (cost=2.27..3.28 rows=101 width=8) (actual time=24.130..24.138 rows=20 loops=1)
Group Key: state.state_group
-> CTE Scan on state (cost=0.00..2.02 rows=101 width=8) (actual time=23.887..24.113 rows=20 loops=1)
-> Index Scan using state_groups_state_type_idx on state_groups_state (cost=0.56..2189.40 rows=5557 width=84) (actual time=0.016..1.159 rows=1356 loops=20)
Index Cond: (state_group = state.state_group)
```
This cuts the execution time from ~190ms to ~130ms, i.e. a reduction
of ~30%.
The full plans are visualised at https://explain.depesz.com/s/WpbT and
https://explain.depesz.com/s/KlEk
Signed-off-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org>
The bg update never managed to complete, because it kept being interrupted by
transactions which want to take a lock.
Just doing it in the foreground isn't that bad, and is a good deal simpler.
we can use `make_in_list_sql_clause` rather than doing our own half-baked
equivalent, which has the benefit of working just fine with empty lists.
(This has quite a lot of tests, so I think it's pretty safe)
The idea here is that if an instance persists an event via the replication HTTP API it can return before we receive that event over replication, which can lead to races where code assumes that persisting an event immediately updates various caches (e.g. current state of the room).
Most of Synapse doesn't hit such races, so we don't do the waiting automagically, instead we do so where necessary to avoid unnecessary delays. We may decide to change our minds here if it turns out there are a lot of subtle races going on.
People probably want to look at this commit by commit.
When a call to `user_device_resync` fails, we don't currently mark the remote user's device list as out of sync, nor do we retry to sync it.
https://github.com/matrix-org/synapse/pull/6776 introduced some code infrastructure to mark device lists as stale/out of sync.
This commit uses that code infrastructure to mark device lists as out of sync if processing an incoming device list update makes the device handler realise that the device list is out of sync, but we can't resync right now.
It also adds a looping call to retry all failed resync every 30s. This shouldn't cause too much spam in the logs as this commit also removes the "Failed to handle device list update for..." warning logs when catching `NotRetryingDestination`.
Fixes#7418
`_is_server_still_joined` will throw if it is given state updates with non-user ID state keys with local user leaves. This is actually rarely a problem since local leaves almost always get persisted by themselves.
(I discovered this on a branch that was otherwise broken, so I haven't seen this in the wild)
Make sure that the AccountDataStream presents complete updates, in the right
order.
This is much the same fix as #7337 and #7358, but applied to a different stream.
This is required as both event persistence and the background update needs access to this function. It should be perfectly safe for two workers to write to that table at the same time.
This allows us to have the logic on both master and workers, which is necessary to move event persistence off master.
We also combine the instantiation of ID generators from DataStore and slave stores to the base worker stores. This allows us to select which process writes events independently of the master/worker splits.
==============================
Bugfixes
--------
- Fix a long-standing bug which could cause messages not to be sent over federation, when state events with state keys matching user IDs (such as custom user statuses) were received. ([\#7376](https://github.com/matrix-org/synapse/issues/7376))
- Restore compatibility with non-compliant clients during the user interactive authentication process, fixing a problem introduced in v1.13.0rc1. ([\#7483](https://github.com/matrix-org/synapse/issues/7483))
Internal Changes
----------------
- Fix linting errors in new version of Flake8. ([\#7470](https://github.com/matrix-org/synapse/issues/7470))
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEv27Axt/F4vrTL/8QOSor00I9eP8FAl69IQ8ACgkQOSor00I9
eP87lAf8DK+v6cs2U0BoD5opzQ7ZazJT6JYTmnMBaTzHU6Wx20V2ttkF7Vpwm3WU
Zsz0048tdYtHFyYBQ1kF5RNIBBJwV8SA/QUcPkR7FVpwZMLR2q4aJn0EE7kC9OMf
tYsmdbHeBdyfLXpXzazxWlgHquLyEIt52ykAcCphjx/Jl2fAExFEhtfsxpECoJ2f
8Dqhjg3WFjd6QWU6AFkElbwHUYCdIWdJOcsC8N1p8OvBmDz5QXv/RlYipHE00Cpx
QQQOgEjdRc6dlz2mbetMklnfII3p2kO9bzNdmEpOzT0Zt7nFaGdntW4I1QA0yJfa
gows9bYMzhqYk7YSiyTYOZ4qyavVtw==
=N/zZ
-----END PGP SIGNATURE-----
Merge tag 'v1.13.0rc2' into develop
Synapse 1.13.0rc2 (2020-05-14)
==============================
Bugfixes
--------
- Fix a long-standing bug which could cause messages not to be sent over federation, when state events with state keys matching user IDs (such as custom user statuses) were received. ([\#7376](https://github.com/matrix-org/synapse/issues/7376))
- Restore compatibility with non-compliant clients during the user interactive authentication process, fixing a problem introduced in v1.13.0rc1. ([\#7483](https://github.com/matrix-org/synapse/issues/7483))
Internal Changes
----------------
- Fix linting errors in new version of Flake8. ([\#7470](https://github.com/matrix-org/synapse/issues/7470))
Fix a bug where the `get_joined_users` cache could be corrupted by custom
status events (or other state events with a state_key matching the user ID).
The bug was introduced by #2229, but has largely gone unnoticed since then.
Fixes#7099, #7373.
The aim here is to get to a stage where we have a `PersistEventStore` that holds all the write methods used during event persistence, so that we can take that class out of the `DataStore` mixin and instansiate it separately. This will allow us to instansiate it on processes other than master, while also ensuring it is only available on processes that are configured to write to events stream.
This is a bit of an architectural change, where we end up with multiple classes per data store (rather than one per data store we have now). We end up having:
1. Storage classes that provide high level APIs that can talk to multiple data stores.
2. Data store modules that consist of classes that must point at the same database instance.
3. Classes in a data store that can be instantiated on processes depending on config.